Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 4 |
Tytuł artykułu

Experimental and numerical investigation of shock wave propagation due to Dam-Break over a wet channel

Warianty tytułu
Języki publikacji
We investigated the propagation of shock waves in a prismatic rectangular channel with a horizontal wet bed. Saltwater was used as a Newtonian fluid within the entire channel instead of normal water for representing the different density fluids. It aims to point out seawater where tsunamis occur as an extreme example of shock waves. The shock waves were generated by sudden lifting of a vertical gate that separated a reservoir and a downstream channel with three different tailwater depths. The experimental data were digitized using image processing techniques. Furthermore, the flow was numerically solved by using Reynolds Averaged Navier-Stokes (RANS) equations and a DualSPHysics program (a code version of smoothed particle hydrodynamics (SPH)). After sudden removal of the vertical gate the propagations of shock waves were experimentally examined via image processing, which can yield both free surface profiles at several times and variations of flow depth with time at four specified locations. Solution successes of two different numerical methods for this rapidly varied unsteady flow are tested by comparing the laboratory data. The results indicate that the disagreements on graphs of time evolutions of water levels obtained from two numerical simulations decrease when the initial tailwater levels increase.
Słowa kluczowe
Opis fizyczny
  • Department of Civil Engineering, Adana Science and Technology University, Adana, Turkey
  • Department of Civil Engineering, Cukurova University, Adana, Turkey
  • Department of Civil Engineering, Iskenderun Technical University, Hatay, Turkey
  • 1. STOKER J.J. Water waves. Interscience Publishers, Wiley, Newyork, 333, 1957.
  • 2. BELLOS V., SOULIS J.V., SAKKAS J.G. Experimental investigation of two-dimensional dam-break induced flows. Journal of Hydraulic Research, 30, 47, 1992.
  • 3. MOHAPATRA P.K., BHALLAMUDI S.M. Computation of a dam-break flood wave in channel transitions. Advances in Water Resources, 19, 181, 1996.
  • 4. LAUBER G., HAGER W.H. Experiments to dam break wave: horizontal channel. Journal of Hydraulic Research, 36, 291, 1998.
  • 5. STANSBY P.K., CHEGINI A., BARNES T.C.D. The initial stages of dam-break flow. J. Fluid Mech., 374, 407, 1998.
  • 6. BUKREEV V.I., GUSEV A.B., MALYSHEVA A.A. Experimental verification of the gas-hydraulic analogy with reference to the dam-break problem. Fluid Dynamics, 39, 801, 2003.
  • 7. JANOSI I.M., JAN D., SZABO K.G., TEL T. Turbulent drag reduction in dam-break flows. Experiments in Fluids, 37, 219, 2004.
  • 8. CHANSON H., JARNY S., COUSSOT P. Dam break wave of thixotropic fluid. Journal of Hydraulic Engineering, ASCE, 132, 280, 2006.
  • 9. KOCAMAN S. Experimental and theoretical investigation of dam-break problem. PhD Thesis. Çukurova University, Institute of Natural and Applied Sciences, Adana, 1, 2007.
  • 10. KOCAMAN S., OZMEN-CAGATAY H. Investigation of dam-break induced shock waves impact on a vertical wall. Journal of Hydrology, 525, 1, 2015. jhydrol.2015.03.040
  • 11. EVANGELISTA S. Experiments and numerical simulations of dike erosion due to a wave impact. Water, MDPI, ISSN 2073-4441, 7 (10), 5831, 2015. doi. org/10.3390/w7105831
  • 12. AURELI F., DAZZI S., MARANZONI A., MIGNOSA P., VACONDIO R. Experimental and numerical evaluation of the force due to the impact of a dam-break wave on a structure. Advances in Water Resources, 76, 29-42,
  • 13. DI CRISTO C., EVANGELISTA S., IERVOLINO M., GRECO M., LEOPARDI A., VACCA A. Dam-break waves over an erodible embankment: experiments and simulations. Journal of Hydraulic Research, 56, 196-210, 2017.
  • 14. GOMEZ-GESTEIRA M., DALRYMPLE R.A. Using a three-dimensional smoothed particle hydrodynamics method for wave impact on a tall structure. Journal of Waterways, Ports, Coasts and Ocean Engineering, ASCE, 130, 63, 2004.
  • 15. DALRYMPLE R.A., ROGERS B. Numerical modeling of water waves with the SPH method. Coastal Engineering, 53, 141, 2006.
  • 16. CRESPO A.J.C. Application of the smoothed particle hydrodynamics model SPHysics to free – surface hydrodynamics. PhD Thesis. Universidade De Vigo, Departamento De Fisica Aplicada, 1, 2008.
  • 17. SHAKIBAEINIA A., JIN Y.C. A mesh-free particle model for simulation of mobile-bed dam break. Advances in Water Resources, 34, 794-807, 2011.
  • 18. XU X. An improved SPH approach for simulating 3D dam-break flows with breaking waves. Computer Methods Applied Mechanics and Engineering, 311, 723, 2016.
  • 19. JIAN W., LIANG D., SHAO S., CHEN R., YANG K. Smoothed Particle Hydrodynamics simulations of dambreak flows around movable structures. International Journal of Offshore and Polar Engineering, 26 (1), 1, 2016.
  • 20. TURHAN E. The investigation of dam-break flow using with experimental and smoothing particle hydrodynamics methods. PhD Thesis. Çukurova University, Institute of Natural and Applied Sciences, Adana, 1, 2017.
  • 21. ZHANG T., FANG F., FENG P. Simulation of dam/leevebreak hydrodynamics with a three-dimensional implicit unstructured-mesh finite element model. Environmental Fluid Mechanics, 17(5), 959-979, 2017.
  • 22. KOCAMAN S., OZMEN-CAGATAY H. The effect of lateral channel contraction on dam-break flows: Laboratory experiment. Journal of Hydrology, 432-433, 145, 2012.
  • 23. CUBOS-RAMIREZ J.M., RAMIREZ-CRUZ J., SALINAS-VAZQUEZ M., VICENTE-RODRIGUEZ W., MARTINEZ-ESPINOSA E., LAGARZA-CORTES C. Efficient two-phase mass-conserving level set method for simulation of incompressible turbulent free surface flows with large density ratio. Computers and Fluids, 136, 212, 2016.
  • 24. EVANGELISTA S., ALTINAKAR M., DI CRISTO C. and LEOPARDI A. Simuation of dam-break waves on movable beds using a multi-stage centered scheme. International Journal of Sediment Research, ISSN: 1001-6279, 28 (3), 269, 2013.
  • 25. SONG L., ZHOU J., LI Q., YANG X., ZHANG Y. An unstructured finite volume model for dam-break floods with wet/dry fronts over complex topography. International Journal of Numerical Methods in Fluids, 67, 960-980, 2011.
  • 26. BOUGUET J.Y. Camera calibration toolbox for Matlab. Computational Vision at the California Institute of Technology, 2004.
  • 27. WILCOX D.C. Turbulence modelling for CFD. DCW Industries, Inc., La Canada CA, 2000.
  • 28. KOCAMAN S., GUZEL H. Numerical and experimental investigation of dam-break wave on a single building situated downstream. Proceedings of International Balkans Conference on Challenges of Civil Engineering, BCCE, EPOKA University, Tirana, Albania, 2011.
  • 29. OZMEN-CAGATAY H., KOCAMAN S., GUZEL H. Investigation of dam-break flood waves in a dry channel with a hump. Journal of Hydro-Environment Research, 8, 304-315, 2014.
  • 30. FLOW SCIENCE INC. Flow-3D user manual. Santa FE NM, 2017.
  • 31. VACONDIO R. Shallow water and Navier-Stokes SPH-like numerical modelling of rapidly varying free-surface flows. PhD Thesis. Universita degli Studi di Parma, Gennaio, 1, 2010.
  • 32. OZBULUT M. Investigation of the violent free surface flows by using smoothed particle hydrodynamics. PhD Thesis. Istanbul Technical University, Grade School of Science Engineering and Technology, Istanbul, 1, 2013.
  • 33. ALTOMARE C., CRESPO A.J.C., DOMINGUEZ J.M., GOMEZ-GESTEIRA M., SUZUKI T., VERWAEST T. Applicability of smoothed particle hydrodynamics for estimation of sea wave impact on coastal structures. Coastal Engineering, 96, 1, 2015.
  • 34. MONAGHAN J.J., KOCHARYAN A. SPH simulation of multi-phase flow. Computer Physics Communications, 87, 225, 1994.
  • 35. DOMINGUEZ J.M., CRESPO A.J.C., GOMEZGESTEIRA M. Optimization strategies for CPU and GPU implementaitons of a smoothed particle hydrodynamics method. Computer Physics Communications, 184, 617, 2012.
  • 36. CUNNINGHAM L.S., ROGERS B.D., PRINGGANA G. Tsunami wave and structure interaction: an investigation with smoothed particle hydrodynamics. Engineering and Computational Mechanics, 167, 126, 2014.
  • 37. GOMEZ-GESTEIRA M., ROGERS B.D., DALRYMPLE R.A., CRESPO A.J.C., NARAYANASWAMY M. User guide for the SPHysics code. 1, 2010.
  • 38. DUALSPHYSICS TEAM. DualSPHysics user guide. User Guide For DualSPHysics Code, 1, 2016.
  • 39. VACONDIO R., MIGNOSA P., PAGANI S. 3D SPH numerical simulation of the wave generated by the Vajont rockslide. Advances in Water Resources, 59, 146, 2013.
  • 40. BARREIRO A., CRESPO A.J.C., DOMINGUEZ J.M., GOMEZ-GESTEIRA M. Smoothed particle hydrodynamics for coastal engineering problems. Computers and Structures, 120, 96, 2013.
  • 41. GOMEZ-GESTEIRA M., ROGERS B.D., CRESPO A.J.C., DALRYMPLE R.A., NARAYANASWAMY M., DOMINGUEZ J.M. SPHysics – development of a free surface fluid solver-part 1: theory and formulations. Computer and Geosciences, 48, 289, 2012.
  • 42. OZMEN-CAGATAY H., KOCAMAN S. Dam-break flows during initial stage using SWE and RANS approaches. Journal of Hydraulic Research, 48 (5), 603, 2010.
  • 43. SHIGEMATSU T., LIU P.L.F., ODA K. Numerical modeling of the initial stages of dam-break waves. Journal of Hydraulic Research, 42, 183, 2004.
  • 44. HE Z., WU T., WENG H., HU P., WU G. Numerical simulation of dam-break flow and bed change considering the vegetation effects. International Journal of Sediment Research, 32, 105-120, 2017.
  • 45. YE Z., ZHAO X. Investigation of water-water interface in dam break flow with a wet bed. Journal of Hydrology, 548, 104-120, 2017.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.