PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 16 | 1 |

Tytuł artykułu

The impact of sampling method on maximum entropy species distribution modeling for bats

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
As species distribution modeling (SDM) becomes more commonly incorporated into ecological studies, there is a need to address how the use of different sampling techniques for assessing the presence of a species can impact the final models produced. Over a four-year period, we sampled for the presence of bats throughout North Dakota via mist netting (physical capture) and ultrasonic acoustic monitoring. We used maximum-entropy modeling to develop habitat suitability maps for each study species using physical capture data, acoustic data and both detection techniques combined. We evaluated the amount of niche overlap between maps to determine how sampling technique impacted the final SDMs and which technique was best for modeling SDMs for each species. We found variation among species in the amount of overlap between SDMs, ranging from pronounced differences (33.9% overlap; Myotis septentrionalis) to highly similar models (80.4% overlap; Myotis lucifugus). Our findings show that acoustic detection results in better SDMs for Myotis spp. while physical capture was best for modeling Eptesicus fuscus and Lasionycteris noctivagans. Although both methods produce highly reliable SDMs, care must be taken when using maximum-entropy modeling for species in which presence data can be gathered in multiple ways. We emphasize that researchers should consider the ecology and behavioral characteristics of their focal species to address any biases associated with sampling technique.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

16

Numer

1

Opis fizyczny

p.241-248,fig.,ref.

Twórcy

  • Department of Biological Sciences, North Dakota State University, Fargo, ND 58108-2715, USA
autor
  • Department of Biological Sciences, North Dakota State University, Fargo, ND 58108-2715, USA

Bibliografia

  • 1. M. D. Adams , B. S. Law , and M. S. Gibson . 2010. Reliable automation of bat call identification for eastern New South Wales, Australia, using classification trees and AnaScheme software. Acta Chiropterologica, 12: 231–245. Google Scholar
  • 2. H. D. J. N. Aldridge , and I. L. Rautenbach . 1987. Morphology, echolocation and resourse partitioning in insectivorous bats. Journal of Animal Ecology, 56: 763–778. Google Scholar
  • 3. D. Audet 1990. Foraging behavior and habitat use by a gleaning bat, Myotis myotis (Chiroptera: Vespertilionidae). Journal of Mammalogy, 71: 420–427. Google Scholar
  • 4. M. Austin 2002. Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecological Modelling, 157: 101–118. Google Scholar
  • 5. R. M. R. Barclay 1991. Population structure of temperate zone insectivorous bats in relation to foraging behaviour and energy demand. Journal of Animal Ecology, 60: 165–178. Google Scholar
  • 6. R. M. R. Barclay , J. H. Fullard , and D. S. Jacobs . 1999. Variation in the echolocation calls of the hoary bat (Lasiurus cinereus): influence of body size, habitat structure, and geographic location. Canadian Journal of Zoology, 77: 530–534. Google Scholar
  • 7. J. J. Belwood , and M. Fenton . 1976. Variation in the diet of Myotis lucifugus (Chiroptera: Vespertilionidae). Canadian Journal of Zoology, 54: 1674–1678. Google Scholar
  • 8. S. Brinklov , E. K. V. Kalko , and A. Surlykke . 2009. Intense echolocation calls from two ‘whispering’ bats, Artibeus jamaicensis and Macrophyllum macrophyllum (Phyllostomidae). The Journal of Experimental Biology, 212: 11–20. Google Scholar
  • 9. H. Broders , C. Findlay , and L. Zheng . 2004. Effects of clutter on echolocation call structure of Myotis septentrionalis and M. lucifugus. Journal of Mammalogy, 85: 273–281. Google Scholar
  • 10. J. H. Brown , G. C. Stevens , and D. M. Kaufman . 1996. The geographic range: size, shape, boundaries, and internal structure. Annual Review of Ecology, Evolution, and Systematics, 27: 597–623. Google Scholar
  • 11. T. M. Burley 1961. Land use or land utilization. The Professional Geographer, 13: 18–20. Google Scholar
  • 12. W. Caire , J. F. Smith , S. Mcguire , and M. A. Royce . 1984. Early foraging behavior of insectivorous bats in western Oklahoma. Journal of Mammalogy, 65: 319–324. Google Scholar
  • 13. Y. Carmel , and U. Safriel . 1998. Habitat use by bats in a mediterranean ecosystem in Israel — conservation implications. Biological Conservation, 84: 245–250. Google Scholar
  • 14. S. B. Carvalho , J. C. Brito , E. G. Crespo , M. E. Watts , and H. P. Possingham . 2011. Conservation planning under climate change: toward accounting for uncertainty in predicted species distributions to increase confidence in conservation investments in space and time. Biological Conservation, 144: 2020–2030. Google Scholar
  • 15. I. Crampton , and R. Barclay . 1995. Habitat selection by bats in fragmented and unfragmented aspen mixedwood stands of different ages. Pp. 238–259, in the Bibliography of the Athabasca River basin: bats and forests symposium, October 19–21, 1995 ( R. M. R. Barclay and R. M. Brigham , eds.). British Columbia Ministry of Forests, Research Branch, Victoria, BC., v + 277 pp. Google Scholar
  • 16. F. H. Crome , and G. Richards . 1988. Bats and gaps: microchiropteran community structure in a Queensland rain forest. Ecology, 69: 1960–1969. Google Scholar
  • 17. J. Eklöf , and G. Jones . 2003. Use of vision in prey detection by brown long-eared bats, Plecotus auritus. Animal Behaviour, 66: 949–953. Google Scholar
  • 18. J. Elith, C. H. Graham, R. P. Anderson, M. Dudik, S. Ferrier, A. Guisan, R. J. Humans, F. Huettmann, J. R. Leathwick, A. Lehmann, et al. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29: 129–151. Google Scholar
  • 19. J. Elith , M. Kearney , and S. J. Phillips . 2010. The art of modelling range-shifting species. Methods in Ecology and Evolution, 1: 330–342. Google Scholar
  • 20. J. Elith , S. J. Phillips , T. Hastie , M. Dudík , Y. E. Chee , and C. J. Yates . 2011. A statistical explanation of maxent for ecologists. Diversity and Distributions, 17: 43–57. Google Scholar
  • 21. P. Faure , and R. Barclay . 1994. Substrate-gleaning versus aerial-hawking: plasticity in the foraging and echolocation behaviour of the long-eared bat, Myotis evotis. Journal of Comparative Physiology, 174A: 651–660. Google Scholar
  • 22. M. Fenton , and G. Bell . 1981. Recognition of species of insectivorous bats by their echolocation calls. Journal of Mammalogy, 62: 233–243. Google Scholar
  • 23. M. Fenton , H. Merriam , and G. L. Holroyd . 1983. Bats of Kootenay, Glacier, and Mount Revelstoke national parks in Canada: identification by echolocation calls, distribution, and biology. Canadian Journal of Zoology, 61: 2503–2508. Google Scholar
  • 24. J. Fry , G. Xian , S. Jin , J. Dewitz , C. Homer , L. Yang , C. Barnes , N. Herold , and J. Wickham . 2011. Completion of the 2006 national land cover database for the conterminous united states. Photogrammetric Engineering and Remote Sensing, 77: 858–864. Google Scholar
  • 25. P. A. Hernandez , C. H. Graham , L. L. Master , and D. L. Albert . 2006. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29: 773–785. Google Scholar
  • 26. R. J. Humans , S. E. Cameron , J. L. Parra , P. G. Jones , and A. Jarvis . 2005. Very high resolution interpolated climate surfaces for global land areas. International Tournal of Climatology, 25: 1965–1978. Google Scholar
  • 27. A. C. Hughes , C. Satasook , P. J. J. Bates , P. Soisook , T. Sritongchuay , G. Jones , and S. Bumrungsri . 2010. Echolocation call analysis and presence-only modelling as conservation monitoring tools for rhinolophoid bats in Thailand. Acta Chiropterologica, 12: 311–327. Google Scholar
  • 28. A. C. Hughes , C. Satasook , P. J. J. Bates , S. Bumrungsri , and G. Jones . 2012. The projected effects of climatic and vegetation changes on the distribution and diversity of southeast Asian bats. Global Change Biology, 18: 1854–1865. Google Scholar
  • 29. N. Jennings , S. Parsons , and M. J. O. Pocock . 2008. Human vs. machine: identification of bat species from their echolocation calls by humans and by artificial neural networks. Canadian Journal of Zoology, 86: 371–377. Google Scholar
  • 30. M. C. Kalcounis , K. A. Hobson , R. M. Brigham , and K. R. Hecker . 1999. Bat activity in the boreal forest: importance of stand type and vertical strata. Journal of Mammalogy, 80: 673–682. Google Scholar
  • 31. T. Kingston , G. Jones , Z. Akbar , and T. H. Kunz . 1999. Echolocation signal design in Kerivoulinae and Murininae (Chiroptera: Vespertilionidae) from Malaysia. Journal of Zoology (London), 249: 359–374. Google Scholar
  • 32. T. Kingston , G. Jones , A. Zubaid , and T. H. Kunz . 2000. Resource partitioning in rhinolophoid bats revisited. Oecologia, 124: 332–342. Google Scholar
  • 33. S. Kramer-Schadt , J. Niedballa , J. D. Pilgrim , B. Schroder , J. Lindenborn , V. Reinfelder , M. Stillfried , I. Heckmann , A. K. Scharf , D. M. Augeri , et al. 2013. The importance of correcting for sampling bias in maxent species distribution models. Diversity and Distributions, 19: 1366–1379. Google Scholar
  • 34. A. J. Kuenzi , and M. L. Morrison . 1998. Detection of bats by mist-nets and ultrasonic sensors. Wildlife Society Bulletin, 26: 307–311. Google Scholar
  • 35. S. Kumar , and T. J. Stohlgren . 2009. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. Journal of Ecology and Natural Environment, 1: 94–98. Google Scholar
  • 36. T. H. Kunz , and C. E. Brock . 1975. A comparison of mist nets and ultrasonic detectors for monitoring flight activity of bats. Journal of Mammalogy, 56: 907–911. Google Scholar
  • 37. J. M. Lamb , T. M. C. Ralph , S. M. Goodman , W. Bogdanowicz , J. Fahr , M. Gajewska , P. J. J. Bates , J. Eger , P. Benda , and P. J. Taylor . 2008. Phylogeography and predicted distribution of African-Arabian and Malagasy populations of giant mastiff bats, Otomops spp. (Chiroptera: Molossidae). Acta Chiropterologica, 10: 21–40. Google Scholar
  • 38. D. N. Lee, M. Papes, and R. A. Van Den Bussche . 2012. Present and potential future distribution of common vampire bats in the Americas and the associated risk to cattle. PLoS ONE, 7: e42466. Google Scholar
  • 39. N. D. Levsen , P. Tiffin , and M. S. Olson . 2012. Pleistocene spéciation in the genus Populus (Salicaceae). Systematic Biology, 61: 401–412. Google Scholar
  • 40. G. Marimuthu , and G. Neuweiler . 1987. The use of acoustical cues for prey detection by the Indian false vampire bat, Megaderma lyra. Journal of Comparative Physiology, 160A: 509–515. Google Scholar
  • 41. S. J. Phillips , and M. Dudik . 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31: 161–175. Google Scholar
  • 42. S. J. Phillips , R. Anderson , and R. Schapire . 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190: 231–259. Google Scholar
  • 43. S. J. Phillips , M. Dudik , J. Elith , C. H. Graham , A. Lehmann , J. R. Leathwick , and S. Ferrier . 2009. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications, 19: 181–197. Google Scholar
  • 44. C. M. Pinto , M. R. Marchán-Rivadeneira , E. E. Tapia , J. P. Carrera , and R. J. Baker . 2013. Distribution, abundance and roosts of the fruit bat Artibeus fraterculus (Chiroptera: Phyllostomidae). Acta Chiropterologica, 15: 85–94. Google Scholar
  • 45. J. M. Ratcliffe , and J. W. Dawson . 2003. Behavioural flexibility: the little brown bat, Myotis lucifugus, and the northern long-eared bat, M. septentrionalis, both glean and hawk prey. Animal Behaviour, 66: 847–856. Google Scholar
  • 46. O. Razgour , J. Hanmer , and G. Jones . 2011. Using multiscale modelling to predict habitat suitability for species of conservation concern: the grey long-eared bat as a case study. Biological Conservation, 144: 2922–2930. Google Scholar
  • 47. H. Rebelo , P. Tarroso , and G. Jones . 2010. Predicted impact of climate change on european bats in relation to their biogeographic patterns. Global Change Biology, 16: 561–576. Google Scholar
  • 48. D. Rocchini , J. Hortal , S. Lengyel , J. M. Lobo , A. JimenezValverde , C. Ricotta , G. Bacaro , and A. Chiarucci . 2011. Accounting for uncertainty when mapping species distributions: the need for maps of ignorance. Progress in Physical Geography, 35: 211–226. Google Scholar
  • 49. H.-U. Schnitzler , and E. K. V. Kalko . 2001. Echolocation by insect-eating bats. Bioscience, 51: 557–569. Google Scholar
  • 50. S. Stoffberg, M. C. Schoeman, and C. A. Matthee . 2012. Correlated genetic and ecological diversification in a widespread southern African horseshoe bat. PLUS ONE, 7: e31946. Google Scholar
  • 51. D. W. Thomas , G. P. Bell , and M. B. Fenton . 1987. Variation in echolocation call frequencies recorded from North American Vespertilionid bats: a cautionary note. Journal of Mammalogy, 68: 842–847. Google Scholar
  • 52. G. D. Thompson , M. P. Robertson , B. L. Webber , D. M. Richardson , J. J. Le Roux , and J. R. U. Wilson . 2011. Predicting the subspecific identity of invasive species using distribution models: Acacia saligna as an example. Diversity and Distributions, 17: 1001–1014. Google Scholar
  • 53. D. Warren , R. Glor , and M. Turelli . 2010. Enmtools: a toolbox for comparative studies of environmental niche models. Ecography, 33: 607–611. Google Scholar
  • 54. M. S. Wisz , R. J. Humans , J. LI , A. T. Peterson , C. H. Graham , and A. Guisan . 2008. Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14: 763–773. Google Scholar
  • 55. M. A. Wund 2006. Variation in the echolocation calls of little brown bats (Myotis lucifugus) in response to different habitats. The American Midland Naturalist, 156: 99–108. Google Scholar
  • 56. C. Yesson , M. L. Taylor , D. P. Tittensor , A. J. Davies , J. Guinotte , A. Baco , J. Black , J. M. Hall-Spencer , and A. D. Rogers . 2012. Global habitat suitability of coldwater octocorals. Journal of Biogeography, 39: 1278-1292. Google Scholar
  • 57. N. Young , L. Carter , and P. Evangelista . 2011. A MaxEnt model v3.3.3e tutorial (ArcGIS v10). Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, 30 pp. Google Scholar
  • 58. Z. Zhang , R. Zhou , T. Tang , Y. Huang , Y. Zhong , and S. Shi . 2008. Genetic variation in central and peripheral populations of Excoecaria agallocha from Indo-West Pacific. Aquatic Botany, 89: 57–62. Google Scholar

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7edf5d99-8cdb-4ee6-b12c-8f22ee1863bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.