PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 86 | 1 |

Tytuł artykułu

Auxin increases the InJMT expression and the level of JAMe–inhibitor of flower induction in Ipomoea nil

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Interactions among jasmonates and auxin in the photoperiodic flower induction of a short-day plant Ipomoea nil were examined. Therefore, we measured changes in jasmonic acid (JA) and jasmonic acid methyl ester (JAMe) levels in the cotyledons of I. nil during the inductive night, as well as the effects of indole-3-acetic acid (IAA) on their content. We noticed an interesting result, that IAA applied on the cotyledons of I. nil is an effective stimulator of JAMe production in seedlings cultivated under inductive night conditions. IAA treatment also significantly increased the transcriptional activity of InJMT (JASMONIC ACID CARBOXYL METHYLTRANSFERASE), while did not affect the expression of JA biosynthesis genes (lipoxyganease, allene oxide synthase, 12-oxophytodienoate reductase). These data, as well as the results of our previous research, suggest that exogenous IAA participates in I. nil flower induction process by stimulating InJMT expression and, as a consequence of that, enhancing the level of JAMe, a flowering inhibitor.

Wydawca

-

Rocznik

Tom

86

Numer

1

Opis fizyczny

Article 3518 [10p.],fig.,ref.

Twórcy

autor
  • Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
  • Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
autor
  • Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
autor
  • Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
autor
  • Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
autor
  • Chair of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
  • Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland

Bibliografia

  • 1. Ausin I, Alonso-Blanco C, Martínez-Zapater JM. Environmental regulation of flowering. Int J Dev Biol. 2005;49:689–705. https://doi.org/10.1387/ijdb.052022ia
  • 2. Thomas B. Light signals and flowering. J Exp Bot. 2006;57:3387–3393. https://doi. org/10.1093/jxb/erl071
  • 3. Posé D, Verhage L, Ott F, Yant L, Mathieu J, Angenent GC, et al. Temperature-dependent regulation of flowering by antagonistic FLM variants. Nature. 2013;503:414–417. https:// doi.org/10.1038/nature12633
  • 4. Song YH, Ito S, Imaizumi T. Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trends Plant Sci. 2013;18:575–583. https://doi.org/10.1016/j. tplants.2013.05.003
  • 5. Wasternack C, Kombrink E. Jasmonates: structural requirements for lipid-derived signals active in plant stress responses and development. ACS Chem Biol. 2010;5:63–77. https:// doi.org/10.1021/cb900269u
  • 6. Acosta IF, Laparra H, Romero SP, Schmelz E, Hamberg M, Mottinger JP, et al. tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize. Science. 2009;323:262–265. https://doi.org/10.1126/science.1164645
  • 7. Cheng H, Song S, Xiao L, Soo HM, Cheng Z, Xie D, et al. Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLoS Genet. 2009;5:e1000440. https://doi.org/10.1371/journal. pgen.1000440
  • 8. Avanci NC, Luche DD, Goldman GH, Goldman NH. Jasmonates are phytohormones with multiple functions, including plant defense and reproduction. Genet Mol Res. 2010;9:484– 505. https://doi.org/10.4238/vol9-1gmr754
  • 9. Wilson ZA, Song J, Taylor B, Yang C. The final split: the regulation of anther dehiscence. J Exp Bot. 2011;62:1633–1649. https://doi.org/10.1093/jxb/err014
  • 10. Ochiai M, Matsumoto S, Yamada K. Methyl jasmonate treatment promotes flower opening of cut Eustoma by inducing cell wall loosening proteins in petals. Postharvest Biol Tec. 2013;82:1–5. https://doi.org/10.1016/j.postharvbio.2013.02.018
  • 11. McConn M, Browse J. The critical requirement for linolenic acid is pollen development, not photosynthesis, in an Arabidopsis mutant. Plant Cell. 1996;8:403–416. https://doi. org/10.1105/tpc.8.3.403
  • 12. Sanders PM, Lee PY, Biesgen C, Boone JD, Bealsm TP, Weiler EW, et al. The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell. 2000;12:1041–1061. https://doi.org/10.1105/tpc.12.7.1041
  • 13. Stintzi A, Browse J. The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci USA. 2000;97:10625–10630. https://doi.org/10.1073/pnas.190264497
  • 14. von Malek B, van der Graaff E, Schneitz K, Keller B. The Arabidopsis male-sterile mutant dde1-2 is defective in the ALLENE OXIDE SYNTHASE gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway. Planta. 2002;216:187–192. https://doi. org/10.1007/s00425-002-0906-2
  • 15. Li L, Zhao Y, Mccaig BC, Wingerd BA, Wang J, Whalon ME, et al. The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell. 2004;16:126–143. https://doi.org/10.1105/tpc.017954
  • 16. Krajnčič B, Nemec J. The effect of jasmonic acid on flowering in Spirodela polyrrhiza (L.). J Plant Physiol. 1995;146:754–756. https://doi.org/10.1016/S0176-1617(11)81945-0
  • 17. Krajnéié B, Cencié A. The effect of jasmonic acid on flowering in the long-short-day plant Wolffia arrhiza (L.) Horkel ex Wimm. Plant Physiol Biochem. 2000;38:40.
  • 18. Barendse GWM, Croes AF, van den Ende G, Bosveld M, Creemers T. Role of hormones on flower bud formation in thin-layer explants of tobacco. Biol Plant. 1985;27:408–412. https://doi.org/10.1007/BF02879889
  • 19. Albrechtová JTP, Ullmann J. Methyl jasmonate inhibits growth and flowering in Chenopodium rubrum. Biol Plant. 1994;36:317–319. https://doi.org/10.1007/BF02921108
  • 20. Maciejewska B, Kopcewicz J. Inhibitory effect of methyl jasmonate on flowering and elongation growth in Pharbitis nil. J Plant Growth Regul. 2002;21:216–223. https://doi. org/10.1007/s003440010061
  • 21. Maciejewska BD, Kęsy J, Zielińska M, Kopcewicz J. Jasmonates inhibit flowering in short-day plant Pharbitis nil. Plant Growth Regul. 2004;43:1–8. https://doi.org/10.1023/ B:GROW.0000038241.00771.bd
  • 22. Kęsy J, Wilmowicz E, Maciejewska B, Frankowski K, Glazińska P, Kopcewicz J. Independent effects of jasmonates and ethylene on inhibition of Pharbitis nil flowering. Acta Physiol Plant. 2011;33:1211–1216. https://doi.org/10.1007/s11738-010-0649-9
  • 23. Friedman H, Goldschmidt EE, Halevy AH. Involvement of calcium in the photoperiodic flower induction process of Pharbitis nil. Plant Physiol. 1989;89:530–534. https://doi. org/10.1104/pp.89.2.530
  • 24. Kęsy J, Maciejewska B, Sowa M, Szumilak M, Kawałowski K, Borzuchowska M, et al. Ethylene and IAA interactions in the inhibition of photoperiodic flower induction of Pharbitis nil. Plant Growth Regul. 2008;55:43–50. https://doi.org/10.1007/s10725-008-9256-9
  • 25. Wilmowicz E, Frankowski K, Kęsy J, Glazińska P, Wojciechowski W, Kućko A, et al. The role of PnACO1 in light- and IAA-regulated flower inhibition in Pharbitis nil. Acta Physiol Plant. 2013;35:801–810. https://doi.org/10.1007/s11738-012-1121-9
  • 26. Frankowski K, Wilmowicz E, Kućko A, Kęsy J, Świeżawska B, Kopcewicz J. Ethylene, auxin, and abscisic acid interactions in the control of photoperiodic flower induction in Pharbitis nil. Biol Plant. 2014;58:305–310. https://doi.org/10.1007/s10535-014-0401-1
  • 27. Cheng Y, Dai X, Zhao Y. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev. 2006;20:1790–1799. https://doi.org/10.1101/gad.1415106
  • 28. Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, et al. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science. 1991;282:2226– 2230. https://doi.org/10.1126/science.282.5397.2226
  • 29. Wiśniewska J, Xu J, Seifertová D, Brewer PB, Ruzicka K, Blilou I, et al. Polar PIN localization directs auxin flow in plants. Science. 2006;312:883. https://doi.org/10.1126/ science.1121356
  • 30. Sessions RA, Zambryski PC. Arabidopsis gynoecium structure in the wild type and in ettin mutants. Development. 1995;121:1519–1532.
  • 31. Sessions RA, Nemhauser JL, McColl A, Roe JL, Feldmann KA, Zambryski PC. Ettin patterns the Arabidopsis floral meristem and reproductive organs. Development. 1997;124:4481–4491.
  • 32. Saniewski M, Ueda J, Miyamoto K. Relationships between jasmonates and auxin in regulation of some physiological processes in higher plants. Acta Physiol Plant. 2002;24:211–220. https://doi.org/10.1007/s11738-002-0013-9
  • 33. Hentrich M, Böttcher C, Düchting P, Cheng Y, Zhao Y, Berkowitz O, et al. The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of YUCCA8 and YUCCA9 gene expression. Plant J. 2013;74:626–637. https://doi.org/10.1111/tpj.12152
  • 34. Gutierrez L, Mongelard G, Floková K, Pacurar DI, Novák O, Staswick P, et al. Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. Plant Cell. 2012;24:2515–2527. https://doi.org/10.1105/tpc.112.099119
  • 35. Sun J, Xu Y, Ye S, Jiang H, Chen Q, Liu F, et al. Arabidopsis ASA1 is important for jasmonate-mediated regulation of auxin biosynthesis and transport during lateral root formation. Plant Cell. 2009;21:1495–1511. https://doi.org/10.1105/tpc.108.064303
  • 36. Fan X, Mattheis JP, Fellman, JK. A role for jasmonates in climacteric fruit ripening. Planta. 1998;204:444–449. https://doi.org/10.1007/s004250050278
  • 37. Gundlach H, Müller MJ, Kutchan TM, Zenk MH. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci USA. 1992;89:2389–2393. https:// doi.org/10.1073/pnas.89.6.2389
  • 38. Wilmowicz E, Frankowski K, Grzegorzewska W, Kęsy J, Kućko A, Banach M, et al. The role of jasmonates in the formation of a compound of chalcones and flavans with phytoalexin-like properties in mechanically wounded scales of Hippeastrum × Hybr. bulbs. Acta Biol Crac Ser Bot. 2014;56:54–58. https://doi.org/10.2478/abcsb-2014-0007
  • 39. Glazińska P, Wojciechowski W, Wilmowicz E, Zienkiewicz A, Frankowski K, Kopcewicz J. The involvement of InMIR167 in the regulation of expression of its target gene InARF8, and their participation in the vegetative and generative development of Ipomoea nil plants. J Plant Physiol. 2014;171:225–234. https://doi.org/10.1016/j.jplph.2013.07.011
  • 40. Wilmowicz E, Kęsy J, Kopcewicz J. Ethylene and ABA interactions in the regulation of flower induction in Pharbitis nil. J Plant Physiol. 2008;165:1917–1928. https://doi. org/10.1016/j.jplph.2008.04.009
  • 41. Frankowski K, Kęsy J, Wojciechowski W, Kopcewicz J. Light- and IAA-regulated ACC synthase gene (PnACS) from Pharbitis nil and its possible role in IAA-mediated flower inhibition. J Plant Physiol. 2009;166:192–202. https://doi.org/10.1016/j.jplph.2008.02.013
  • 42. Wilmowicz E, Frankowski K, Glazińska P, Kęsy J, Kopcewicz J. Involvement of ABA in flower induction of Pharbitis nil. Acta Soc Bot Pol. 2011;80:21–26. https://doi.org/10.5586/ asbp.2011.003
  • 43. Wilmowicz E, Frankowski K, Glazińska P, Kęsy J, Wojciechowski W, Kopcewicz J. Cross talk between phytohormones in the regulation of flower induction in Pharbitis nil. Biol Plant. 2011;55:757–760. https://doi.org/10.1007/s10535-011-0182-8
  • 44. Schaller A, Stintzi A. Enzymes in jasmonate biosynthesis – structure, function, regulation. Phytochemistry. 2009;70:1532–1538. https://doi.org/10.1016/j.phytochem.2009.07.032
  • 45. Nagpal P, Ellis C, Weber H, Ploense S, Barkawi L, Guilfoyle T, et al. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development. 2005;132:4107–4118. https://doi.org/10.1242/dev.01955
  • 46. Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science. 1998;280:1091–1094. https://doi. org/10.1126/science.280.5366.1091
  • 47. Tabata R, Ikezaki M, Fujibe T, Aida M, Tian CE, Ueno Y, et al. Arabidopsis AUXIN RESPONSE FACTOR 6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes. Plant Cell Physiol. 2010;51:164–175. https:// doi.org/10.1093/pcp/pcp176
  • 48. Reeves PH, Ellis CM, Ploense SE, Wu MF, Yadav V, Tholl D, et al. A regulatory network for coordinated flower maturation. PLoS Genet. 2012;8:e1002506. https://doi.org/10.1371/ journal.pgen.1002506
  • 49. Zhang ZP, Baldwin IT. Transport of [2-14C]jasmonic acid from leaves to roots mimics wound induced changes in endogenous jasmonic acid pools in Nicotiana sylvestris. Planta. 1997;203:436–441. https://doi.org/10.1007/s004250050211
  • 50. Heil M, Ton J. Long-distance signalling in plant defence. Trends Plant Sci. 2008;13:264– 272. https://doi.org/10.1016/j.tplants.2008.03.005
  • 51. Gfeller A, Baerenfaller K, Loscos J, Chételat A, Baginsky S, Farmer EE. Jasmonate controls polypeptide patterning in undamaged tissue in wounded Arabidopsis leaves. Plant Physiol. 2011;156:1797–1807. https://doi.org/10.1104/pp.111.181008
  • 52. Weiler EW, Albrecht T, Groth B, Xia ZQ, Luxem M, Lib H, et al. Evidence for the involvement of jasmonates and their octadecanoid precursors in the tendril coiling response of Bryonia dioica. Phytochemistry. 1993;32:591–600. https://doi.org/10.1016/ S0031-9422(00)95142-2
  • 53. Ueda J, Miyamoto K, Aoki M. Jasmonic acid inhibits the IAA-induced elongation of oat coleoptile segments: a possible mechanism involving the metabolism of cell wall polysaccharides. Plant Cell Physiol. 1994;35:1065–1070.
  • 54. Grsic S, Kirchheim B, Pieper K, Fritsch M, Hilgenberg W, Ludwig-Müller J. Induction of auxin biosynthetic enzymes by jasmonic acid and in clubroot diseased Chinese cabbage plants. Physiol Plant. 1999;105:521–531. https://doi.org/10.1034/j.1399-3054.1999.105318.x

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7eb72f77-1aee-4a5d-ab7c-e70783f3e310
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.