PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 18 | 1 |

Tytuł artykułu

Regulation of angiogenesis by hypoxia: the role of microRNA

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Understanding the cellular pathways that regulate angiogenesis during hypoxia is a necessary aspect in the development of novel treatments for cardiovascular disorders. Although the pathways of angiogenesis have been extensively studied, there is limited information on the role of miRNAs in this process. miRNAs or their antagomirs could be used in future therapeutic approaches to regulate hypoxia-induced angiogenesis, so it is critical to understand their role in governing angiogenesis during hypoxic conditions. Although hypoxia and ischemia change the expression profile of many miRNAs, a functional role for a limited number of so-called hypoxamiRs has been demonstrated in angiogenesis. Here, we discuss the best examples that illustrate the role of hypoxamiRs in angiogenesis.

Wydawca

-

Rocznik

Tom

18

Numer

1

Opis fizyczny

p.47-57,fig.,ref.

Twórcy

autor
  • Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
autor
autor
autor
  • Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
  • Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland

Bibliografia

  • 1. Rocha, S. Gene regulation under low oxygen: holding your breath for transcription. Trends Biochem. Sci. 32 (2007) 389-397.
  • 2. Guillemin, K. and Krasnow, M.A. The hypoxic response: huffing and HIFing. Cell 89 (1997) 9-12.
  • 3. Semenza, G.L. Hypoxia and cancer. Cancer Metastasis Rev. 26 (2007) 223-224.
  • 4. Eltzschig, H.K. and Carmeliet, P. Hypoxia and inflammation. N. Engl. J. Med. 364 (2011) 656-665.
  • 5. Pierson, D.J. Pathophysiology and clinical effects of chronic hypoxia. Respir. Care 45 (2000) 39-51; discussion 51-53.
  • 6. Fulton, A.B., Akula, J.D., Mocko, J.A., Hansen, R.M., Benador, I.Y., Beck, S.C., Fahl, E., Seeliger, M.W., Moskowitz, A. and Harris, M.E. Retinal degenerative and hypoxic ischemic disease. Doc. Ophthalmol. 118 (2009) 55-61.
  • 7. Yoshida, Y., Tsunoda, T., Takashima, Y., Fujimoto, T., Doi, K., Sasazuki, T., Kuroki, M., Iwasaki, A. and Shirasawa, S. ZFAT is essential for endothelial cell assembly and the branch point formation of capillary-like structures in an angiogenesis model. Cell Mol. Biol. Lett. 15 (2010) 541-550.
  • 8. Tonini, T., Rossi, F. and Claudio, P.P. Molecular basis of angiogenesis and cancer. Oncogene 22 (2003) 6549-6556.
  • 9. Beck, H. and Plate, K.H. Angiogenesis after cerebral ischemia. Acta Neuropathol. 117 (2009) 481-496.
  • 10. Haider, H., Akbar, S.A. and Ashraf, M. Angiomyogenesis for myocardial repair. Antioxid. Redox Signal. 11 (2009) 1929-1944.
  • 11. Shazly, T.A. and Latina, M.A. Neovascular glaucoma: etiology, diagnosis and prognosis. Semin. Ophthalmol. 24 (2009) 113-121.
  • 12. Crosby, M.E., Glazer, P.M. and Ivan, M. "Micro"-management of DNA repair genes by hypoxia. Cell Cycle 8 (2009) 4009-4010.
  • 13. Gee, H.E., Camps, C., Buffa, F.M., Patiar, S., Winter, S.C., Betts, G., Homer, J., Corbridge, R., Cox, G., West, C.M., Ragoussis, J. and Harris, A.L. hsa-mir-210 is a marker of tumor hypoxia and a prognostic factor in head and neck cancer. Cancer 116 (2010) 2148-2158.
  • 14. Pocock, R. Invited review: decoding the microRNA response to hypoxia. Pflugers Arch. 461 (2011) 307-315.
  • 15. Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell 136 (2009) 215-233.
  • 16. Berezikov, E., Guryev, V., Van De Belt, J., Wienholds, E., Plasterk, R.H. and Cuppen, E. Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120 (2005) 21-24.
  • 17. Noren Hooten, N., Abdelmohsen, K., Gorospe, M., Ejiogu, N., Zonderman, A.B. and Evans, M.K. microRNA expression patterns reveal differential expression of target genes with age. PLoS One 5 (2010) e10724.
  • 18. Ritchie, W., Rajasekhar, M., Flamant, S. and Rasko, J.E. Conserved expression patterns predict microRNA targets. PLoS Comput. Biol. 5 (2009) e1000513.
  • 19. Du, R., Sun, W., Xia, L., Zhao, A., Yu, Y., Zhao, L., Wang, H., Huang, C. and Sun, S. Hypoxia-induced down-regulation of microRNA-34a promotes EMT by targeting the notch signaling pathway in tubular epithelial cells. PLoS One 7 (2012) e30771.
  • 20. Muth, M., Theophile, K., Hussein, K., Jacobi, C., Kreipe, H. and Bock, O. Hypoxia-induced down-regulation of microRNA-449a/b impairs control over targeted SERPINE1 (PAI-1) mRNA - a mechanism involved in SERPINE1 (PAI-1) overexpression. J. Transl. Med. 8 (2010) 33.
  • 21. Kulshreshtha, R., Ferracin, M., Wojcik, S.E., Garzon, R., Alder, H., Agosto-Perez, F.J., Davuluri, R., Liu, C.G., Croce, C.M., Negrini, M., Calin, G.A. and Ivan, M. A microRNA signature of hypoxia. Mol. Cell. Biol. 27 (2007) 1859-1867.
  • 22. Chan, S.Y. and Loscalzo, J. MicroRNA-210: a unique and pleiotropic hypoxamir. Cell Cycle 9 (2010) 1072-1083.
  • 23. Kaelin, W.G., Jr. and Ratcliffe, P.J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 30 (2008) 393-402.
  • 24. Wang, V., Davis, D.A., Haque, M., Huang, L.E. and Yarchoan, R. Differential gene up-regulation by hypoxia-inducible factor-1alpha and hypoxia-inducible factor-2alpha in HEK293T cells. Cancer Res. 65 (2005) 3299-3306.
  • 25. Maynard, M.A., Evans, A.J., Hosomi, T., Hara, S., Jewett, M.A. and Ohh, M. Human HIF-3alpha4 is a dominant-negative regulator of HIF-1 and is downregulated in renal cell carcinoma. FASEB J. 19 (2005) 1396-1406.
  • 26. Li, Q.F., Wang, X.R., Yang, Y.W. and Lin, H. Hypoxia upregulates hypoxia inducible factor (HIF)-3alpha expression in lung epithelial cells: characterization and comparison with HIF-1alpha. Cell Res. 16 (2006) 548-558.
  • 27. Mole, D.R., Maxwell, P.H., Pugh, C.W. and Ratcliffe, P.J. Regulation of HIF by the von Hippel-Lindau tumour suppressor: implications for cellular oxygen sensing. IUBMB Life 52 (2001) 43-47.
  • 28. Lando, D., Peet, D.J., Whelan, D.A., Gorman, J.J. and Whitelaw, M.L. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 295 (2002) 858-861.
  • 29. Dery, M.A., Michaud, M.D. and Richard, D.E. Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. Int. J. Biochem. Cell Biol. 37 (2005) 535-540.
  • 30. Pagé, E.L., Robitaille, G.A., Pouysségur, J. and Richard, D.E. Induction of hypoxia-inducible factor-1α by transcriptional and translational mechanisms. J. Biol. Chem. 277 (2002) 48403-48409.
  • 31. Kaluz, S., Kaluzova, M. and Stanbridge, E.J. Regulation of gene expression by hypoxia: integration of the HIF-transduced hypoxic signal at the hypoxiaresponsive element. Clin. Chim. Acta 395 (2008) 6-13.
  • 32. Pugh, C.W. and Ratcliffe, P.J. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat. Med. 9 (2003) 677-684.
  • 33. Huang, X., Ding, L., Bennewith, K.L., Tong, R.T., Welford, S.M., Ang, K.K., Story, M., Le, Q.T. and Giaccia, A.J. Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol. Cell 35 (2009) 856-867.
  • 34. Hua, Z., Lv, Q., Ye, W., Wong, C.K., Cai, G., Gu, D., Ji, Y., Zhao, C., Wang, J., Yang, B.B. and Zhang, Y. MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One 1 (2006) e116.
  • 35. Lei, Z., Li, B., Yang, Z., Fang, H., Zhang, G.M., Feng, Z.H. and Huang, B. Regulation of HIF-1alpha and VEGF by miR-20b tunes tumor cells to adapt to the alteration of oxygen concentration. PLoS One 4 (2009) e7629.
  • 36. Lin, S.C., Wang, C.C., Wu, M.H., Yang, S.H., Li, Y.H. and Tsai, S.J. Hypoxia-induced microRNA-20a expression increases ERK phosphorylation and angiogenic gene expression in endometriotic stromal cells. J. Clin. Endocrinol. Metab. 97 (2012) E1515-1523.
  • 37. Cascio, S., D'andrea, A., Ferla, R., Surmacz, E., Gulotta, E., Amodeo, V., Bazan, V., Gebbia, N. and Russo, A. miR-20b modulates VEGF expression by targeting HIF-1 alpha and STAT3 in MCF-7 breast cancer cells. J. Cell Physiol. 224 (2010) 242-249.
  • 38. Rane, S., He, M., Sayed, D., Vashistha, H., Malhotra, A., Sadoshima, J., Vatner, D.E., Vatner, S.F. and Abdellatif, M. Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ. Res. 104 (2009) 879-886.
  • 39. Ghosh, G., Subramanian, I.V., Adhikari, N., Zhang, X., Joshi, H.P., Basi, D., Chandrashekhar, Y.S., Hall, J.L., Roy, S., Zeng, Y. and Ramakrishnan, S. Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-alpha isoforms and promotes angiogenesis. J. Clin. Invest. 120 (2010) 4141-4154.
  • 40. Saito, K., Kondo, E. and Matsushita, M. MicroRNA 130 family regulates the hypoxia response signal through the P-body protein DDX6. Nucleic Acids Res. 39 (2011) 6086-6099.
  • 41. Bruning, U., Cerone, L., Neufeld, Z., Fitzpatrick, S.F., Cheong, A., Scholz, C.C., Simpson, D.A., Leonard, M.O., Tambuwala, M.M., Cummins, E.P. and Taylor, C.T. MicroRNA-155 promotes resolution of hypoxia-inducible factor 1α activity during prolonged hypoxia. Mol. Cell Biol. 31 (2011) 4087-4096.
  • 42. Huang, X., Le, Q.T. and Giaccia, A.J. MiR-210--micromanager of the hypoxia pathway. Trends Mol. Med. 16 (2010) 230-237.
  • 43. Camps, C., Buffa, F.M., Colella, S., Moore, J., Sotiriou, C., Sheldon, H., Harris, A.L., Gleadle, J.M. and Ragoussis, J. hsa-miR-210 is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin. Cancer Res. 14 (2008) 1340-1348.
  • 44. Zhang, Z., Sun, H., Dai, H., Walsh, R.M., Imakura, M., Schelter, J., Burchard, J., Dai, X., Chang, A.N., Diaz, R.L., Marszalek, J.R., Bartz, S.R., Carleton, M., Cleary, M.A., Linsley, P.S. and Grandori, C. MicroRNA miR210 modulates cellular response to hypoxia through the MYC antagonist MNT. Cell Cycle 8 (2009) 2756-2768.
  • 45. Liu, F., Lou, Y.L., Wu, J., Ruan, Q.F., Xie, A., Guo, F., Cui, S.P., Deng, Z.F. and Wang, Y. Upregulation of MicroRNA-210 regulates renal angiogenesis mediated by activation of VEGF signaling pathway under ischemia/perfusion injury in vivo and in vitro. Kidney Blood Press. Res. 35 (2012) 182-191.
  • 46. Goodsell, D.S. The Molecular perspective: VEGF and angiogenesis. Oncologist 7 (2002) 569-570.
  • 47. Ferrara, N., Gerber, H.P. and Lecouter, J. The biology of VEGF and its receptors. Nat. Med. 9 (2003) 669-676.
  • 48. Oladipupo, S., Hu, S., Kovalski, J., Yao, J., Santeford, A., Sohn, R.E., Shohet, R., Maslov, K., Wang, L.V. and Arbeit, J.M. VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting. Proc. Nat. Acad. Sci. USA 108 (2011) 13264-13269.
  • 49. Levy, A.P. Hypoxic regulation of VEGF mRNA stability by RNA-binding proteins. Trends Cardiovasc. Med. 8 (1998) 246-250.
  • 50. Ray, P.S., Jia, J., Yao, P., Majumder, M., Hatzoglou, M. and Fox, P.L. A stress-responsive RNA switch regulates VEGFA expression. Nature 457 (2009) 915-919.
  • 51. Jafarifar, F., Yao, P., Eswarappa, S.M. and Fox, P.L. Repression of VEGFA by CA-rich element-binding microRNAs is modulated by hnRNP L. EMBO J. 30 (2011) 1324-1334.
  • 52. Fandrey, J., Gorr, T.A. and Gassmann, M. Regulating cellular oxygen sensing by hydroxylation. Cardiovasc Res. 71 (2006) 642-651.
  • 53. Berra, E., Benizri, E., Ginouves, A., Volmat, V., Roux, D. and Pouyssegur, J. HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J. 22 (2003) 4082-4090.
  • 54. Appelhoff, R.J., Tian, Y.-M., Raval, R.R., Turley, H., Harris, A.L., Pugh, C.W., Ratcliffe, P.J. and Gleadle, J.M. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxiainducible factor. J. Biol. Chem. 279 (2004) 38458-38465.
  • 55. Berra, E., Benizri, E., Ginouves, A., Volmat, V., Roux, D. and Pouyssegur, J. HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1[alpha] in normoxia. EMBO J. 22 (2003) 4082-4090.
  • 56. Lee, S.-T., Chu, K., Jung, K.-H., Yoon, H.-J., Jeon, D., Kang, K.-M., Park, K.-H., Bae, E.-K., Kim, M., Lee, S.K. and Roh, J.-K. MicroRNAs induced during ischemic preconditioning. Stroke 41 (2010) 1646-1651.
  • 57. Chan, Y.C., Khanna, S., Roy, S. and Sen, C.K. miR-200b targets Ets-1 and is down-regulated by hypoxia to induce angiogenic response of endothelial cells. J. Biol. Chem. 286 (2011) 2047-2056.
  • 58. Listowski, M.A., Heger, E., Bogusławska, D.M., Machnicka, B., Kuliczkowski, K., Leluk, J. and Sikorski, A.F. microRNAs: fine tuning of erythropoiesis. Cell. Mol. Biol. Lett. DOI: 10.2478/s11658-012-0038-z, in press.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7ea911f8-f570-42e5-8ad2-02385c59a48a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.