PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 26 | 3 |

Tytuł artykułu

Exercise for endurance and strength: always separate?

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Physical training can be classified into three main types: endurance, resistance, and patterned movements. The first two of them have a significant impact on muscle phenotype and metabolism while patterned movement exercises concern changes in a motor program in the central nervous system and result in only slight changes in muscle tissue. Adaptation to endurance versus resistance training in most aspects is extremely different. Due to the mutually opposite nature, in classical training systems, endurance and resistance exercises are very often separated. Nowadays, in sport as well as recreation and rehabilitation it is postulated to combine both types of exercises. Because of this, the very important question arises as to how combined workouts including strength and endurance exercises will affect the body. An even more important question concerns the proportions of both types of exercises, their intensity and duration. Therefore, defining safe and effective training systems can be beneficial not only for athletes but also for the prevention of civilization-related diseases and aging effect.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

3

Opis fizyczny

p.107-112,fig.,ref.

Twórcy

autor
  • Department of Dance and Fitness, Poznan University of Physical Education, Poznan, Poland
autor
  • Department of Physiology, Poznan University of Physical Education, Poznan, Poland
autor
  • Department of Dance and Fitness, Poznan University of Physical Education, Poznan, Poland
autor
  • Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom

Bibliografia

  • 1. Akimoto T, Pohnert SC, Li P, Zhang M, Gumbs C, Rosenberg PB, Williams RS, et al. Exercise stimulates Pgc-1α transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem. 2005 May 20; 280(20): 19587-19593.
  • 2. Baar K. Training for endurance and strength: lessons from cell signaling. Med Sci Sports Exerc. 2006 Nov; 38(11): 1939-1944.
  • 3. Baar K, Esser K. Phosphorylation of p70(S6k) correlates with increased skeletal muscle mass following resistance exercise. Am J Physiol. 1999 Jan 1; 276(1): C120-C127.
  • 4. Benzi G, Panceri P, De Bernardi M, Villa R, Arcelli E, D’angelo L, et al. Mitochondrial enzymatic adaptation of skeletal muscle to endurance training. Appl Physiol. 1975 Apr 1; 38(4): 565-569.
  • 5. Bergeron R, Ren JM, Cadman KS, Moore IK, Perret P, Pypaert M, et al. Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am J Physiol Endocrinol Metab. 2001 Dec 1; 281(6): E1340-E1346.
  • 6. Betz C, Hall MN. Where is mTOR and what is it doing there? J Cell Biol. 2013 Nov 25; 203(4): 563-574.
  • 7. Byfield MP, Murray JT, Backer JM. hVps34 is a nutrientregulated lipid kinase required for activation of p70 S6 kinase. J Biol Chem. 2005 Sep 23; 280(38): 33076-33082.
  • 8. Clarke DH. Adaptations in strength and muscular endurance resulting from exercise. Exerc Sport Sci Rev. 1973 Jan 1; 1(1): 73-107.
  • 9. Colliander EB, Tesch PA. Effects of eccentric and concentric muscle actions in resistance training. Acta Physiol Scand. 1990 Sep; 140(1): 31-39.
  • 10. Czubryt MP, McAnally J, Fishman GI, Olson EN. Regulation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and mitochondrial function by MEF2 and HDAC5. Proc Natl Acad Sci U S A. 2003 Feb 18; 100(4): 1711-1716.
  • 11. Farrell PA, Fedele MJ, Vary TC, Kimball SR, Lang CH, Jefferson LS. Regulation of protein synthesis after acute resistance exercise in diabetic rats. Am J Physiol. 1999 Apr 1; 276(4): E721-E727.
  • 12. Fluck M, Waxham MN, Hamilton MT, Booth FW. Skeletal muscle Ca(2+)-independent kinase activity increases during either hypertrophy or running. J Appl Physiol (1985). 2000 Jan; 88(1): 352-358.
  • 13. Hamosh M, Lesch M, Baron J, Kaufman S. Enhanced protein synthesis in a cell-free system from hypertrophied skeletal muscle. Science. 1967 Aug 25; 157(3791): 935-937.
  • 14. Hardie DG, Sakamoto K. AMPK: a key sensor of fuel and energy status in skeletal muscle. Physiology. 2006 Feb; 21(1): 48-60.
  • 15. Hayashi T, Hirshman MF, Kurth EJ, Winder WW, Goodyear LJ. Evidence for 5’ AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes. 1998 Aug 1; 47(8): 1369-1373.
  • 16. Hickson RC. Interference of strength development by simultaneously training for strength and endurance. Eur J Appl Physiol Occup Physiol. 1980 Dec 1; 45(2-3): 255-263.
  • 17. Holloszy JO. Biochemical adaptations in muscle effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem. 1967 May 10; 242(9): 2278-2282.
  • 18. Holloszy JO. Exercise-induced increase in muscle insulin sensitivity. J Appl Physiol. 2005 Jul; 99(1): 338-343.
  • 19. Holloszy JO, Oscai LB, Don IJ, Mole PA. Mitochondrial citric acid cycle and related enzymes: adaptive response to exercise. Biochem Biophys Res Commun. 1970 Sep 30; 40(6): 1368-1373.
  • 20. Holloszy JO, Rennie MJ, Hickson RC, Conlee RK, Hagberg JM. Physiological consequences of the biochemical adaptations to endurance exercise. Ann N Y Acad Sci. 1977 Oct; 301(1): 440-450.
  • 21. Holmes BF, Kurth-Kraczek EJ, Winder WW. Chronic activation of 5’-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle. J Appl Physiol (1985). 1999 Nov; 87(5): 1990-1995.
  • 22. Irrcher I, Adhihetty PJ, Sheehan T, Joseph AM, Hood DA. PPARγ coactivator-1α expression during thyroid hormone-and contractile activity-induced mitochondrial adaptations. Am J Physiol Cell Physiol. 2003 Jun 1; 284(6): C1669-C1677.
  • 23. Klausen K, Andersen LB, Pelle I. Adaptive changes in work capacity, skeletal muscle capillarization and enzyme levels during training and detraining. Acta Physiol Scand. 1981 Sep; 113(1): 9-16.
  • 24. Kubica N, Bolster DR, Farrell PA, Kimball SR, Jefferson LS. Resistance exercise increases muscle protein synthesis and translation of eukaryotic initiation factor 2Bϵ mRNA in a mammalian target of rapamycindependent manner. J Biol Chem. 2005 Mar 4; 280(9): 7570-7580.
  • 25. Marsin AS, Bertrand L, Rider MH, Deprez J, Beauloye C, Vincent MF, et al. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr Biol. 2000 Oct 14; 10(20): 1247-1255.
  • 26. Nader GA, Esser KA. Intracellular signaling specificity in skeletal muscle in response to different modes of exercise. J Appl Physiol (1985). 2001 May; 90(5): 1936-1942.
  • 27. Nied RJ, Franklin B. Promoting and prescribing exercise for the elderly. Am Fam Physician. 2002 Feb 1; 65(3): 419-426.
  • 28. Ouchi N, Shibata R, Walsh K. AMP-activated protein kinase signaling stimulates VEGF expression and angiogenesis in skeletal muscle. Circ Res. 2005 Apr 29; 96(8): 838-846.
  • 29. Parkington JD, Siebert AP, LeBrasseur NK, Fielding RA. Differential activation of mTOR signaling by contractile activity in skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2003 Nov; 285(5): R1086-R1090.
  • 30. Pette D, Heilmann C. Transformation of morphological, functional and metabolic properties of fast-twitch muscle as induced by long-term electrical stimulation. Basic Res Cardiol. 1977 Mar-Jun; 72(2-3): 247-253.
  • 31. Physical Activity Guidelines for Americans. Office of Disease Prevention & Health Promotion, US Department of Health and Human Services, October 2008. Retrieved 11 January 2010 from: www.health.gov/paguidelines.
  • 32. Sharkey B. Intensity and duration of training and the development of cardiorespiratory endurance. Med Sci Sports. 1970 Winter; 2(4): 197-202.
  • 33. Sousa N, Mendes R, Silva A, Oliveira J. Combined exercise is more effective than aerobic exercise in the improvement of fall risk factors: a randomized controlled trial in community-dwelling older men. Clin Rehabil. 2017 Apr; 31(4): 478-486.
  • 34. Staron RS, Hikida RS, Hagerman FC, Dudley GA, Murray TF. Human skeletal muscle fiber type adaptability to various workloads. J Histochem Cytochem. 1984 Feb; 32(2): 146-152.
  • 35. Tesch PA. Skeletal muscle adaptations consequent to long-term heavy resistance exercise. Med Sci Sports Exerc. 1988 Oct; 20(5 Suppl): S132-S134.
  • 36. Tesch PA, Karlsson J. Muscle fiber types and size in trained and untrained muscles of elite athletes. J Appl Physiol (1985). 1985 Dec; 59(6): 1716-1720.
  • 37. United Nations. World Population Prospects: The 2010 Revision. Department of Economic and Social Affairs, New York 2011.
  • 38. WHO. Global recommendation on physical activity for health. 2010.
  • 39. Winder WW, Hardie DG. Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am J Physiol. 1996 Feb; 270(2 Pt 1): E299-E304.
  • 40. Wong TS, Booth FW. Skeletal muscle enlargement with weight-lifting exercise by rats. J Appl Physiol (1985). 1988 Aug; 65(2): 950-954.
  • 41. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006 Feb 10; 124(3): 471-484.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7e44cb65-50ab-4cd0-b2de-cb59962e0132
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.