PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 05 |

Tytuł artykułu

Integrated microsystem for multiplexed genosensor detection of biowarfare agents

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
An early, rapid and definite detection for the presence of biowarfare agents, pathogens, viruses and toxins is required due to their harmful effect to human population. Those potentially encountering the aforementioned include people involved in civil rescue and security, homeland security, military operations, as well as public transportation securities such as airports, metro and railway stations. This work informs the reader of an electrochemical genosensor with an integrated microsystem array combined with microtube fluidics that allows simultaneous detection of different biowarfare agents such as Bacillus anthracis, Brucella melitensis, Bacteriophage lambda, Francisella tularensis, Burkholderia mallei, Coxiella burnetii, Yersinia pestis, and Bacillus thuringiensis var. kurstaki. The chip electrode arrays were modified via coimmobilisation of a 1:100 (mol/mol) mixture of a thiolated probe and a polyethyleneglycol terminated bipodal thiol. Herein, PCR products from relevant biowarfare agents were detected reproducibly through a sandwich assay format with the target hybridised between a surface immobilised probe into the electrode and a horseradish peroxidase-labelled secondary reporter probe, which provided an enzyme based electrochemical signal. Cross-reactivity studies over potential interfering DNA sequences have demonstrated high selectivity using the developed platform producing highthroughput.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

05

Opis fizyczny

p.20-32,fig.,ref.

Twórcy

autor
  • CSIR/BRRI UP Box 40 Kumasi, Ghana
autor
  • CSIR/BRRI UP Box 40 Kumasi, Ghana
autor
  • CSIR/FORIG P.O Box 63 KNUST Kumasi, Ghana

Bibliografia

  • [1] Enserink, M., and Kaiser, J., U.N. Taps special labs to investigate syrian attack. Science, 2013. 341(6150): p. 1050-1051.
  • [2] Bush, L.M., andPerez, M. T., The Anthrax Attacks 10 Years Later. Annals of internal medicine, 2012. 156(1): p. 41-44.
  • [3] Lim, D.V., Simpson, J. M., Kearns, E. A., Kramer, M. F., Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clinical Microbiology Reviews, 2005. 18: p. 583-607.
  • [4] Skládal, P., Pohanka, M., Kupská, E., and Šafář, B., Biosensors for Detection of Francisella tularensis and Diagnosis of Tularemia. In: Biosensors, INTECH, Vienna, 2010: p. 115-126.
  • [5] Walczak, M.M., Popenoe, D. D., Deinhammer, R. S., Lamp, B. D., Chung, C., and Porter, M. D., Reductive desorption of alkanethiolate monolayers at gold: A measure of surface coverage. Langmuir, 1991. 7: p. 2687-2693.
  • [6] Simşek, H., Taner, M., Karadenizli, A., Ertek, M., and Vahaboğlu, H., Identification of Francisella tularensis by both culture and real-time TaqMan PCR methods from environmental water specimens in outbreak areas where tularemia cases were not previously reported. Eur J Clin Microbiol Infect Dis., 2012 31(9): p. 2353-2357.
  • [7] Johansson, A., Ibrahim, A., Göransson, I., Eriksson, U., Gurycova, D., Clarridge, J. E, and Sjöstedt, A., Evaluation of PCR-Based Methods for Discrimination ofFrancisella Species and Subspecies and Development of a Specific PCR That Distinguishes the Two Major Subspecies of Francisella tularensis. Journal of clinical microbiology, 2000. 38(11): p. 4180-4185.
  • [8] Bystrom, M., Bocher, S., Magnusson, A., Prag, J., Johansson, A., Tularemia in Denmark: identification of a Francisella tularensis subsp. holarctica strain by realtime PCR and high-resolution typing by multiple-locus variable-number tandem repeat analysis. Journal of clinical microbiology 2005. 43(10): p. 5355-5358.
  • [9] Versage, J.L., Severin, D. D., Chu, M.C. and Petersen, J. M., Development of a multitarget real-time TaqMan PCR assay for enhanced detection of Francisella tularensis in complex specimens. Journal of clinical microbiology, 2003. 41: p. 5492-5499.
  • [10] Pohanka, M., Pavlis, O., Kroca, M., ELISA detection of Francisella tularensis using polyclonal and monoclonal antibodies. Defence Science Journal, 2008. 58(5): p. 698-702.
  • [11] Mollasalehi, H.a.Y., R., Development and evaluation of a novel nucleic acid sequence-based amplification method using one specific primer and one degenerate primer for simultaneous detection of Salmonella enteritidis and Salmonella typhimurium. Analytica Chimica Acta, 2013. 770: p. 169-174.
  • [12] Vanlalhmuaka, T., K., Tuteja, U.,Sarika, K., Nagendra, S. and Kumar, S., Reverse Line Blot Macroarray for Simultaneous Detection and Characterization of Four Biological Warfare Agents. Indian Journal of Microbiology, 2013. 53(1): p. 41-47.
  • [13] Mohtashemi, M., Walburger, D. K., Peterson, M. W., Sutton, F. N., Skaer, H. B. and Diggans, J. C., Open-target sparse sensing of biological agents using DNA microarray. BMC Bioinformatics, 2011. 12: p. 314.
  • [14] Civit, L., Fragoso, A., Hölters, S., Dürst, M., and O’Sullivan, C. K., Electrochemical genosensor array for the simultaneous detection of multiple high-risk human papillomavirus sequences in clinical samples. Analytica Chimica Acta, 2012. 715: p. 93-98.
  • [15] Du, Y., Chen, C., Zhou, M., Dong, S. and Wang, E., Microfluidic Electrochemical Aptameric Assay Integrated On-Chip: A Potentially Convenient Sensing Platform for the Amplified and Multiplex Analysis of Small Molecules. Analytical Chemistry, 2011. 83(5): p. 1523-1529
  • [16] Zhang, M., Yin, B. C., Tan, W. and Ye, B. C., A versatile graphene-based fluorescence "on/off" switch for multiplex detection of various targets. Biosensors and Bioelectronics, 2011. 26(7): p. 3260-3265.
  • [17] Elsholz, B., Nitsche, A., Achenbach, J., Ellerbrok, H., Blohm, L., Albers, J., Pauli, G., Hintsche, R. and Wörl, R., Electrical microarrays for highly sensitive detection of multiplex PCR products from biological agents. Biosensors and Bioelectronics, 2009. 24(6): p. 1737-1743.
  • [18] Lazcka, O., Javier Del Campo, F., Xavier Munoz, F., Pathogen detection: A perspective of traditional methods and biosensors. Biosensors and Bioelectronics, 2007. 22 p. 1205-1217.
  • [19] Pividori, M.I., Lermo, A., Bonanni, A., Alegret, S., del Valle, M., Electrochemical immunosensor for the diagnosis of celiac disease. Analytical Biochemistry, 2009. 388: p. 229-234.
  • [20] Ivnitski, D., O’Neil, D. J., Gattuso, A., Schlicht, R., Calidonna, M., and Fisher, R., Nucleic acid approaches for detection and identification of biological warfare and infectious disease agents. BioTechniques, 2003. 35(4): p. 862-869.
  • [21] Arora, P., Sindhu, A., Dilbaghi, N. and Chaudhury, A., Biosensors as innovative tools for the detection of food borne pathogens. Biosensors and Bioelectronics, 2011. 28(1): p. 1-12.
  • [22] Warsinke, A., Benkert, A., Scheller, F. W., Electrochemical immunoassays. Fresenius Journal o fAnalytical Chemistry, 2000. 366(6-7): p. 622-634.
  • [23] Klietmann, W.F., and Ruouff, K. L., Bioterrorism: Implications for the Clinical Microbiologist. Clinical Microbiology Reviews, 2001. 14(2): p. 364-381.
  • [24] Frischknecht, F., The history of biological warfare. EUROPEAN MOLECULAR BIOLOGY ORGANIZATION, 2003. 4(Special issue): p. S47-S52.
  • [25] Fragoso, A., Latta, D., Laboria, N., von Germar, F., Hansen-Hagge, T. E, Kemmner, W, Gartner, C., Klemm, R., Dreseb, K. S., and O’Sullivan, C. K, Integrated microfluidic platform for the electrochemical detection of breast cancer markers in patient serum samples. Lab on a Chip, 2011. 11: p. 625-631.
  • [26] Civit L., F.A., and O'Sullivan C. K., Evaluation of techniques for generation of single-stranded DNA for quantitative detection. Analytical Biochemistry, 2012. 431(2): p. 132-138.
  • [27] Wang, J., Cao, Y., Li, Y., Liang, Z., and Li, G., Electrochemical strategy for detection of phosphorylation based on enzyme-linked electrocatalysis. Journal of Electroanalytical Chemistry, 2011. 656(1-2): p. 274-278.
  • [28] Wang, Z., Liu, L., Xu, Y., Sun, L. and Li. G., Simulation and assay of protein biotinylation with electrochemical technique. Biosensors and Bioelectronics, 2011. 26(11): p. 4610-4613.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7e1667e6-3560-4490-975d-06f28ae82431
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.