PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 5 |

Tytuł artykułu

Peroxidases produced by new ligninolytic Bacillus strains isolated from marsh and grassland decolourized anthraquinone and azo dyes

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The biotechnological relevance of ligninolytic organisms remains topical and may remain so in the foreseeable future. The enzyme battery produced by ligninolytic bacteria, including Bacillus species, has shown immense industrial significance. Consequently, peroxidases produced by newly isolated ligninolytic Bacillus strains from the marsh and grassland in Hogsback forest reserve of the Eastern Cape Province of South Africa were evaluated for decolourization of anthraquinone (Remazol Brilliant Blue R-RBBR) and azo (Congo Red-CR) dyes. Maximum dye decolourization was observed with the peroxidase from Bacillus sp. NWODO-3: CR (69.89±2.64 %) and RBBR (72.12±0.38 %). Dye decolourization readings for peroxidases from the other Bacillus strains were CR: 55.06±5.48 %, RBBR: 70.45±0.0 % (Bacillus sp. MABINYA-1), 42.62±5.55 % and 42.42±4.82 % against CR for Bacillus sp. MABINYA-2 and Bacillus sp. FALADE-1, respectively. RBBR was less susceptible to the attack by crude peroxidase produced by Bacillus sp. MABINYA-2 and Bacillus sp. FALADE-1 as the dye decolourization activities observed were 4.91±0.36 % and 1.19±0.0 %, respectively. These results suggest the industrial relevance of peroxidases from the new ligninolytic Bacillus strains in bioremediation.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

5

Opis fizyczny

p.3163-3172,fig.,ref.

Twórcy

autor
  • SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
  • Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
autor
  • SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
  • Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
autor
  • SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
  • Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
autor
  • SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
  • Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa

Bibliografia

  • 1. FALADE A.O., NWODO U.U., IWERIEBOR B.C., GREEN E., MABINYA L.V., OKOH A.I. Lignin peroxidase functionalities and prospective applications. MicrobiologyOpen, 6, e00394, 2017a.
  • 2. SÁNCHEZ O., SIERRA R., ALMÉCIGA-DÍAZ C.J. Delignification process of agro-industrial wastes an alternative to obtain fermentable carbohydrates for producing fuel. In Alternative fuel, Manzanera, M, Eds., InTech, 111, 2011.
  • 3. HONG Y., DASHTBAN M., CHEN S., SONG R., QIN W. Lignin in paper mill sludge is degraded by white-rot fungi in submerged fermentation. Microb. Biochem. Technol., 7, 4, 2015.
  • 4. ROUCHES E., ZHOU S., STEYER J.P., CARRERE H. White-rot fungi pretreatment of lignocellulosic biomass for anaerobic digestion: impact of glucose supplementation. Process Biochem., 51, 1784, 2016.
  • 5. MARTINEZ A.T., CAMARERO S., RUIZ-DUENAS F.J., MARTINEZ M.J. Biological lignin degradation. In lignin valorization, Beckham, G. T., Eds., The Royal Society of Chemistry, 199, 2018.
  • 6. WAN C., LI Y. Fungal pretreatment of lignocellulosic biomass. Biotechnol. Adv., 30, 1447, 2012.
  • 7. BUGG T.D.H., AHMAD M., HARDIMAN E.M., SINGH R. The emerging role for bacteria in lignin degradation and bio-product formation. Curr. Opin. Biotechnol., 22, 394, 2011.
  • 8. BANDOUNAS L., WIERCKX N.J., DE WINDE J.H., RUIJSSENAARS, H.J. Isolation and characterization of novel bacterial strains exhibiting ligninolytic potential. BMC Biotechnol., 11, 94, 2011.
  • 9. CHANG Y.C., CHOI D., TAKAMIZAWA K., KIKUCHI S. Isolation of Bacillus sp. strains capable of decomposing alkali lignin and their application in combination with lactic acid bacteria for enhancing cellulase performance. Bioresource Technol., 152, 429, 2014.
  • 10. ZHU D., ZHANG P., XIE C., ZHANG W., SUN J., QIAN W., YANG B. Biodegradation of alkaline lignin by Bacillus ligniniphilus L1. Biotechnol. Biofuels, 10, 44, 2017.
  • 11. FALADE A.O., EYISI O.A.L., MABINYA L.V., NWODO U.U., OKOH A.I. Peroxidase production and ligninolytic potentials of fresh water bacteria Raoultella ornithinolytica and Ensifer adhaerens. Biotechnol. Rep., 16, 12, 2017b.
  • 12. SINGH R.L., SINGH P.K., SINGH R.P. Enzymatic decolorization and degradation of azo dyes-a review. Int. Biodeter. Biodegr., 104, 21, 2015.
  • 13. PARSHETTI G.K., PARSHETTI S., KALYANI D.C., DOONG R., GOVINDWAR S.P. Industrial dye decolorizing lignin peroxidase from Kocuria rosea MTCC 1532. Ann. Microbiol., 62, 217, 2012.
  • 14. SASIKUMAR V., PRIYA V., SHIV S.C., SATHISH S.D. Isolation and preliminary screening of lignin degrading microbes. J. Acad. Indus. Res., 3, 291, 2014.
  • 15. TAYLOR C.R., HARDIMAN E.M., AHMAD M., SAINSBURY P.D., NORRIS P.R., BUGG T.D.H. Isolation of bacterial strains able to metabolize lignin from screening of environmental samples. J. Appl. Microbiol., 113, 521, 2012
  • 16. KUMAR S., STECHER G., TAMURA K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol., 33, 1870, 2016.
  • 17. LÓPEZ M.J., GUISADO G., VARGAS-GARCIA M.C., SUÁREZ-ESTRELLA F., MORENO J. Decolorization of industrial dyes by ligninolytic microorganisms isolated from composting environment. Enzyme Microb. Technol., 40, 42, 2006.
  • 18. CHANCE B., MAEHLY A.C. Assay of catalases and peroxidases. Methods Enzymol., 2, 773, 1955.
  • 19. PARK S. Study of an enzyme activity in extracts of Ginkgo biloba leaves. Bull. Korean Chem. Soc., 27, 1885, 2006.
  • 20. KALYANI D.C., PHUGARE S.S., SHEDBALKAR U.U., JADHAR J.P. Purification and characterization of a bacterial peroxidase from the isolated strain Pseudomonas sp. SUK1 and its application for textile dye decolourization. Ann. Microbiol., 61, 483, 2011.
  • 21. OLLIKKA P., ALHONMÄKI K., LEPPÄNEN V., GLUMOFF T., RAIJOLA T., SUOMINEN, I. Decolorization of azo, triphenyl methane, heterocyclic and polymeric dyes by lignin peroxidase isoenzymes from Phanerocheate chrysosporium. Appl. Environ. Microbiol., 59, 4010, 1993.
  • 22. RAJ A., REDDY M.M.K., CHANDRA R., PUROHIT H.J., KAPLEY A. Biodegradation of kraft-lignin by Bacillus sp. isolated from sludge of pulp and paper mill. Biodegra., 18, 783, 2007.
  • 23. CHANDRA R., RAJ A., POROHIT H.J., KAPLEY A. Characterization and optimization of three potential aerobic bacterial strains for kraft lignin degradation from pulp paper waste. Chemosphere, 67, 839, 2008.
  • 24. HEMATI A., ALIASGHARZAD N., KHAKVAR R. In vitro evaluation of lignocellulolytic activity of thermophilic bacteria isolated from different composts and soils of Iran. Biocatal. Agric. Biotechnol., 2018 [In Press].
  • 25. NAZ S. Study of ligninolytic bacteria isolation and characterization from Kuthrel Agro Field of Bhilai-Durg Region. Int. J. Curr. Microbiol. App. Sci., 5 (12), 141, 2016.
  • 26. LAI C.M.T., CHUN H.B., DANQUAH M.K., SAPTORO A. Isolation of thermophilic lignin degrading bacteria from oil palm empty fruit bunch (EFB) compost. IOP conference series. Mater. Sci. Eng., 206, 012016, 2017.
  • 27. CHANTARASIRI A., BOONTANOM P. Decolorization of synthetic dyes by ligninolytic Lysinibacillus sphaericus JD1103 isolated from Thai wetland ecosystems. AACL Bioflux, 10 (4), 814, 2017.
  • 28. HOODA R., BHARDWAJ N.K., SINGH P. Screening and identification of ligninolytic bacteria for the treatment of pulp and paper mill effluent. Water, Air, Soil Pollut., 226, 305, 2015.
  • 29. RAJ A., KUMAR S., HAG I., SINGH, S.K. Bioremediation and toxicity reduction in pulp and paper mill effluent by newly isolated ligninolytic paenibacillus sp. Ecol. Eng., 71, 355, 2014.
  • 30. RAVI K., GARCIA-HIDALGO J., NOBEL M., GORWA-GRAUSLUND M.F., LIDEN G. Biological conversion of aromatic monolignol compounds by a Pseudomonas isolate from sediments of the Baltic sea. AMB Expr., 8, 32, 2018.
  • 31. TIAN J.H., POURCHER A.M., PEU P. Isolation of bacterial strains able to metabolize lignin and lignin-related compounds. Lett. Appl. Microbiol., 63, 30, 2016.
  • 32. AKITA H., KIMURA Z., YUSOFF M.Z.M., HOSHINO T. Isolation of Pseudomonas sp. strain CCA1 from leaf soil and preliminary characterization its ligninolytic activity. JSM Biotechnol. Bioeng., 3 (4), 1062, 2016.
  • 33. SCHALLMEY M., SINGH A., WARD O.P. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol., 50, 1, 2004.
  • 34. RAO P.R., KAVYA P. Production, isolation and purification of peroxidase using Bacillus subtilis. 2014 1st International Congress on Environmental, Biotechnology, and Chemistry Engineering. IPCBEE., 64, 21, 2014.
  • 35. MUSENGI A., KHAN N., LE ROES-HILL M., PLETSCHKE B.I., BURTON S.G. Increasing the scale of peroxidase production by Streptomyces sp. strain BSII#1. J. Appl. Microbiol., 116, 554, 2014.
  • 36. MIN K., GONG G., WOO, H.M., KIM Y., UM Y. A dye-decolorizing peroxidase from Bacillus subtilis exhibiting substrate-dependent optimum temperature for dyes and β-ether lignin dimer. Sci. Rep., 5, 8245, 2015.
  • 37. XU Z., QIN L., CAI M., HUA W., JIN M. Biodegradation of kraft lignin by new isolated Klebsiella pneumoniae, Pseudomonas putida, and Ochrobactrum tritici strains. Environ. Sci. Pollut. Res., 2018 [In Press].
  • 38. TING A.S.Y., TAY H., PEH K.L., TAN W.S., TEE C.S. Novel isolation of thermophilic Ureibacillus terrenus from compost of empty fruit bunches (EFB) of oil palm and its enzymatic activities. Biocatal. Agric. Biotechnol., 2, 162, 2013.
  • 39. HUSAIN Q., HUSAIN M., KULSHRESTHA Y. Remediation and treatment of organic-pollutants mediated by peroxidases: a review. Crit Rev Biotechnol., 29, 94, 2009.
  • 40. DAWKAR V.V., JADHAV U.U., TELKE A.A., GOVINDWAR S.P. Peroxidase from Bacillus sp. VUS and its role in the decolourization of textile dyes. Biotechnol. Bioprocess Eng., 14, 361, 2009.
  • 41. GHODAKE G.S., KALME S.D., JADHAV J.P., GOVINDWAR S.P. Purification and partial characterization of lignin peroxidase from Acinetobacter calcoaceticus NCIM 2890 and its application in decolourization of textile dyes. Appl. Biochem. Biotechnol., 152, 6, 2009.
  • 42. REKIK H., NADIA Z.J., BEJAR W., KOURDALI S., BELHOUL M., HMIDI M., BENKIAR A., BADIS A., SALLEM N., BEJAR S., JAOUADI B. Characterization of a purified decolorizing detergent-stable peroxidase from Streptomyces griseosporeus SN9. Int. J. Biol. Macromol., 73, 253, 2015.
  • 43. GUO M., JIA R., YANG X. Decolorization of the azo dye Acid Red 18 by crude manganese peroxidase: effect of system parameters and kinetic study. Biocatal. Biotransform., 32, 276, 2014.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7d9832ed-e885-4538-8853-ecb49a549be5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.