Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 29 | 3 |
Tytuł artykułu

Variation of bioactive secondary metabolites in Hypericum origanifolium during its phenological cycle

Warianty tytułu
Języki publikacji
The genus Hypericum has received considerable interest from scientists, as it contains the variety of structurally diverse natural products which possess a wide array of biological properties. The present study was conducted to determine ontogenetic and morphogenetic variation of hypericin, chlorogenic acid and flavonoids, as rutin, hyperoside, apigenin-7-O-glucoside, quercitrin and quercetin content in Hypericum origanifolium growing in Turkey. Wild growing plants were harvested at vegetative, floral budding, full flowering, fresh fruiting and mature fruiting stages and dissected into stem, leaf and reproductive tissues and assayed for bioactive compounds by HPLC method. Hypericin, quercetin and quercitrin content in whole plant increased during course of ontogenesis and the highest level was reached in blooming stage. On the contrary, hyperoside content of whole plant decreased linearly with advancing of development stages and the highest level was observed at vegetative stage. Plants produced similar amount of chlorogenic acid at all stages of plant phenology except for mature fruiting at which the amount of this compound was decreased sharply. Among different tissues, reproductive parts accumulated the highest level of hypericin, quercetin and quercitrin, however, leaves produced substantially higher amount of chlorogenic acid and hyperoside. Rutin and apigenin-7-O-glucoside were detectable in all tissues only during fruit maturation. The presence and variation of these bioactive substances in H. origanifolium were reported for the first time.
Słowa kluczowe
Opis fizyczny
  • Department of Agronomy, Faculty of Agriculture, University of Ondokuz Mayis, 55139 Kurupelit, Samsun, Turkey
  • Institute of Botany, Zaliju ezeru 49, Vilnius 2021, Lithuania
  • Kaunas University of Medicine, A. Mickeviciaus 9, Kaunas 44307, Lithuania
  • Kaunas University of Medicine, A. Mickeviciaus 9, Kaunas 44307, Lithuania
  • Abreu IN, Porto ALM, Marsaioli AJ, Mazzafera P (2004) Distribution of bioactive substances from Hypericum brasiliense during plant growth. Plant Sci 167:949–954
  • Agostinis P, Vantieghem A, Merlevede W, De Witte D (2002) Hypericin in cancer treatment: more light on the way. Int J Biochem Cell Biol 34:221–241
  • Ayan A, Çırak C, Kevseroğlu K, Özen T (2004) Hypericin in some Hypericum species from Turkey. Asian J Plant Sci 3:200–202
  • Baytop T (1999) Therapy with medicinal plants in Turkey, Istanbul University Press, Istanbul, pp 166–167
  • Butterweck V, Jurgenliemk G, Nahrstedt A, Winterhoff H (2000) Flavonoids from Hypericum perforatum show antidepressant activity in the forced swimming test. Planta Med 66:3–6
  • Chu YH, Chang CL, Hsu HF (2000) Flavonoid content of several vegetables and their antioxidant activity. J Sci Food Agric 80:561–566
  • Ciccarelli D, Andreucci AC, Pagni AM (2001) Translucent glands and secretory canals in Hypericum perforatum, morphological, anatomical and histochemical studies during the course of onthogenesis. Ann Bot 88:637–644
  • Couceiro MA, Afreen F, Zobayed SMA, Kozai T (2006) Variation in concentrations of major bioactive compounds of St. John’s wort: effects of harvesting time, temperature and germplasm. Plant Sci 170:128–134
  • Çırak C, Sağlam B, Ayan AK, Kevseroğlu K (2006) Morphogenetic and diurnal variation of hypericin in some Hypericum species from Turkey during the course of ontogenesis. Biochem Syst Ecol 34:1–13
  • Davis PH (1988) Flora of Turkey and the east Aegean islands. Edinburgh University Press, Edinburgh, pp 399
  • Dias ACP, Francisco A, Barberan T, Ferreria F, Ferreres F (1998) Unusual flavanoids produced by callus of Hypericum perforatum. Phytochemistry 48:1165–1168
  • Gastpar M, Zeller K (2005) Hypericum-extrakt STW3 und sertralin zur behandlung der mittelschweren depression. Psychopharmakotherapie 12:146–153
  • Jensen KIN, Gaul OS, Specth EG, Doohan DJ (1995) Hypericin content of Nova Scotia genotypes of Hypericum perforatum L. Can J Plant Sci 75:923–926
  • Kazlauskas S, Bagdonaite E (2004) Quantitative analysis of active substances in St. John’s wort (Hypericum perforatum L.) by the high performance liquid chromatography method. Medicina (Kaunas) 40:975–981
  • Kim DO, Lee KW, Lee HJ, Lee CY (2002) Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J Agric Food Chem 50:3713–3717
  • Kirakosyan A, Gibson D, Sirvent T (2003) Comparative survey of Hypericum perforatum plants as sources of hypericins and hyperforin. J Herbs Species Med Plants 10:110–122
  • Kitanov GM (2001) Hypericin and pseudohypericin in some Hypericum species. Biochem Syst Ecol 29:171–178
  • Kovacs G, Kuzovkina IN, Szoke E, Kursinszki L (2004) HPLC determination of flavonoids in hairy-root cultures of Scutellaria baicalensis Georgi. Chromatographia 60:81–85
  • Kurth H, Spreemann R (1998) Phytochemical characterization of various St. John’s wort extracts. Adv Ther 15:117–128
  • Maggi F, Ferretti G, Pocceschi N, Menghini L, Ricciutelli M (2004) Morphological, histochemical and phytochemical investigation of the genus Hypericum of the Central Italy. Fitoterapia 75:702–711
  • Martonfi P, Repcak M (1994) Secondary metabolites during flower ontogenesis of Hypericum perforatum L. Zahradnictvi 21:37–44
  • Michelitsch A, Biza B, Wurglics M, Schubert-Zsilavecz M, Baumeister A, Likussar W (2000) Determination of hypericin in herbal medicine products by differential pulse polarography. Phytochem Anal 11:41–44
  • Nahrstedt A, Butterweck V (1997) Biologically active and other chemical constituents of the herb Hypericum perforatum L. Pharmacopsychiatry 30:129–134
  • Noldner M, Schotz K (2002) Rutin is essential for the antidepressant activity of Hypericum perforatum extracts in the forced swimming test. Planta Med 68:577–80
  • Özen T, Ayan AK, Çırak C, Kevseroğlu K (2005) Total phenol content of some Hypericum species growing in Turkey. Chem Nat Compd 41:232–233
  • Patocka J (2003) The chemistry, pharmacology, and toxicology of the biologically active constituents of the herb Hypericum perforatum L. J Appl Biomed 1:61–73
  • Pharmeuropa (2004) Hyperici herbae extractum siccum quantificatum. St. John’s wort dry extract, quantified 16(1):97–98
  • Radusiene J, Bagdonaite E, Kazlauskas S (2004) Morphological and chemical evaluation on Hypericum perforatum and H. maculatum in Lithuania. Acta Hort 629:55–62
  • Robson NKB (1981) Studies in the genus Hypericum L. (Guttiferae). 2. Characters of the genus. Bull Br Mus Nat Hist (Bot) 8:55–226
  • Sirvent T, Walker L, Vance N, Donna G (2002) Variation in hypericins from wild populations of Hypericum perforatum L. in the Pacific Northwest of the U.S.A. Econ Bot 56:41–49
  • Southwell IA, Campbell MH (1991) Hypericin content variation in Hypericum perforatum L. in Australia. Phytochemistry 30:475–478
  • Southwell IA, Bourke CA (2001) Seasonal variation in hypericin content of Hypericum perforatum L. (St. John’s wort). Phytochemistry 56:437–441
  • Tekel’ova D, Repcak M, Zemkova E, Toth J (2000) Quantitative changes of dianthrones, hyperforin and flavonoids content in the flower ontogenesis of Hypericum perforatum. Planta Med 66:778–780
  • Walker L, Sirvent T, Gibson D, Vance N (2001) Regional differences in hypericin and pseudohypericin concentrations and five morphological traits among Hypericum perforatum plants in the North-western United States. Can J Bot 79:1248–1255
  • Yoshizumi M, Tsuchiya K, Kirima K, Kyaw M, Suzaki Y, Tamaki T (2001) Quercetin inhibits Shc- and phosphatidyl-inositol 3-kinase-mediated c-Jun N-terminal kinase activation by angiotensin II in cultured rat aortic smooth muscle cells. Mol Pharmacol 60:656–665
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.