PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 02 |

Tytuł artykułu

Promotion of growth and upregulation of thylakoid membrane proteins in the halophyte Salicornia bigelovii Torr. under saline conditions

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Salicornia bigelovii is an unusually salt-tolerant plant species and is able to continue to photosynthesize and grow in saline conditions. There is an interest in understanding the mechanisms of this salt tolerance. In this study, S. bigelovii plants grown under 400 mM NaCl had higher growth and higher photosynthetic capacity than those not grown with salt. The intensities of the fluorescence emission peaks in the thylakoid membrane spectra in the salt treatment were higher than in the control. PSII and PSI peaks of the control were blue-shifted, indicating that salt deficiency affects energy transfer and structural stability in PSII and PSI. Both SDS-PAGE and western blot illustrated that the PSI proteins PsaA and PsaB and the PSII proteins CP47 and CP43 were upregulated with salt treatment, which might partly explain the change in the energy transfer process. Furthermore, Lhcb1 was also stimulated by salt treatment while Lhcb2 and Lhcb3 did not show noticeable changes. This demonstrated that salt is important in the maintenance of photosynthesis. In summary, treatment with salt led to an increased amount of PsaA/B, CP47, CP43, and Lhcb1 with a concurrent increase in antennae size. These photosystem changes may be responsible for the adaptation of S. bigelovii to saline conditions.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

37

Numer

02

Opis fizyczny

Article: 20 [7 p.], fig.,ref.

Twórcy

autor
  • School of Biochemical and Environmental Engineering, Nanjing Xiaozhuang University, Nanjing 211171, Jiangsu, China
autor
  • School of Biochemical and Environmental Engineering, Nanjing Xiaozhuang University, Nanjing 211171, Jiangsu, China
autor
  • College of Life Science, Qufu Normal University, Qufu 273165, Shandong, China
autor
  • School of Biochemical and Environmental Engineering, Nanjing Xiaozhuang University, Nanjing 211171, Jiangsu, China
autor
  • Jiangsu Second Normal University, Nanjing 210013, Jiangsu, China

Bibliografia

  • Anderson J, De Chow F, Las Rivas J (2008) Dynamic flexibility in the structure and function of photosystem II in higher plant thylakoid membranes: the grana enigma. Photosynth Res 98:575–587. doi:10.1007/s11120-008-9381-3
  • Arnon DI (1949) Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15. doi:10.1104/pp.24.1.1
  • Bashan Y, Moreno M, Troyo E (2000) Growth promotion of the seawater-irrigated oilseed halophyte Salicornia bigelovii inoculated with mangrove rhizosphere bacteria and halotolerant Azospirillum spp. Biol Fertil Soils 32:265–272. doi:10.1007/s003740000246
  • De Las Rivas J, Heredia P, Roman A (2007) Oxygen-evolving extrinsic proteins (PsbO, P, Q, R): bioinformatic and functional analysis. Biochim Biophys Acta 1767:575–582. doi:10.1016/j. bbabio.2007.01.018
  • Duarte B, Santos D, Marques JC, Caçador I (2013) Ecophysiological adaptations of two halophytes to salt stress: photosynthesis, PS II photochemistry and anti-oxidant feedback-implications for resilience in climate change. Plant Physiol Biochem 67:178–188. doi:10.1016/j.plaphy.2013.03.004
  • Dunn SB (1986) Effects of modification of transfer buffer composition on the denaturation of proteins in gels on the recognition of proteins on western blots by monoclonal antibodies. Anal Biochem 153:144–153. doi:10.1016/0003-2697(86)90207-1
  • Eshaghi S, Andersson B, Barber J (1999) Isolation of a highly active PSII-LHCII supercomplex from thylakoid membranes by a direct method. FEBS Lett 446:23–26. doi:10.1016/S0014- 5793(99)00149-0
  • Fan PX, Feng JJ, Jiang P, Chen X, Bao H, Nie L, Jiang D, Lv S, Kuang T, Li Y (2011) Coordination of carbon fixation and nitrogen metabolism in Salicornia europaea under salinity: comparative proteomic analysis on chloroplast proteins. Proteomics 11:4346–4367. doi:10.1002/pmic.201100054
  • Gong H, Tang Y, Wang J, Wen X, Zhang L, Lu C (2008) Characterization of photosystem II in salt-stressed cyanobacterial Spirulina platensis cells. Biochim Biophys Acta 1777:488–495. doi:10.1016/j.bbabio.2008.03.018
  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics 2014:701596. doi:10.1155/2014/701596
  • Jiang D, Huang L, Lin Y, Nie L, Lv S, Kuang T, Li Y (2012) Inhibitory effect of Salicornia europaea on the marine alga Skeletonema costatum. Sci China Life Sci 55:551–558. doi:10. 1007/s11427-012-4328-5
  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0
  • Lu KX, Cao BH, Feng XP, He Y, Jiang DA (2009) Photosynthetic response of salt-tolerant and sensitive soybean varieties. Photosynthetica 47:381–387. doi:10.1007/s11099-009-0059-7
  • Mehta P, Jajoo A, Mathur S, Bharti S (2010) Chlorophyll a fluorescence study revealing effects of high salt stress on photosystem II in wheat leaves. Plant Physiol Biochem 48:16–20. doi:10.1016/j.plaphy.2009.10.006
  • Murata N, Mohanty PS, Hayashi H, Papageorgiou GC (1992) Glycinebetaine stabilizes the association of extrinsic proteins with the photosynthetic oxygen evolving complex. FEBS Lett 296:187–189. doi:10.1016/0014-5793(92)80376-R
  • Neelam S, Subramanyam R (2013) Alteration of photochemistry and protein degradation of photosystem II from Chlamydomonas reinhardtii under high salt grown cells. J Photochem Photobiol B 124:63–70. doi:10.1016/j.jphotobiol.2013.04.007
  • Pang QY, Chen SX, Dai SJ, Chen YZ, Wang Y, Yan X (2010) Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. J Proteome Res 9:2584–2599. doi:10.1021/pr100034f
  • Parks GE, Dietrich MA, Schumaker KS (2002) Increased vacuolar Na+/H+ exchange activity in Salicornia bigelovii Torr. In response to NaCl. J Exp Bot 53:1055–1065. doi:10.1093/jexbot/53.371.1055
  • Qiu NW, Zhou F, Wang Y, Peng X, Hua C (2014) The strategy of Na+ compartmentation and growth of Atriplex centralasiatica in adaptation to saline environments. Russ J Plant Physiol 61:238–245. doi:10.1134/S1021443714020113
  • Rabhi M, Giuntini D, Castagna A, Remorini D, Baldan B, Smaoui A, Abdelly C, Ranieri A (2010) Sesuvium portulacastrum maintains adequate gas exchange, pigment composition, and thylakoid proteins under moderate and high salinity. J Plant Physiol 167:1336–1341. doi:10.1016/j.jplph.2010.05.009
  • Redondo-Gomez S, Mateos-Naranjo E, Figueroa ME, Davy AJ (2010) Salt stimulation of growth and photosynthesis in an extreme halophyte, Arthrocnemum macrostachyum. Plant Biol 12:79–87. doi:10.1111/j.1438-8677.2009.00207.x
  • Stepien P, Johnson GN (2009) Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: role of the plastid terminal oxidase as an alternative electron sink. Plant Physiol 149:1154–1165. doi:10.1104/pp.108.132407
  • Sudhir PR, Pogoryelov D, Kovacs L, Garab G, Murthy SD (2005) The effects of salt stress on photosynthetic electron transport and thylakoid membrane proteins in the cyanobacterium Spirulina platensis. J Biochem Mol Biol 38:481–485
  • Tang Y, Wen X, Lu Q, Yang Z, Cheng Z, Lu C (2007) Heat stress induces an aggregation of the light-harvesting complex of photosystem II in spinach plants. Plant Physiol 143:629–638. doi:10.1104/pp.106.090712
  • Trotta A, Redondo-Gómez S, Pagliano C, Clemente ME, Rascio N, Rocca NL, Antonacci A, Andreucci F, Barbato R (2012) Chloroplast ultrastructure and thylakoid polypeptide composition are affected by different salt concentrations in the halophytic plant Arthrocnemum macrostachyum. J Plant Physiol 169:111–116. doi:10.1016/j.jplph.2011.11.001
  • Türkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 67:2–9. doi:10.1016/j.envexpbot.2009.05.008
  • Wang LY, Zhao KF (2004) Effect of NaCl stress on ion compartmentation, photosynthesis and growth of Salicornia bigelovii Torr. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao (in Chinese) 30:94–98. doi:10.3321/j.issn:1671-3877.2003.05.020
  • Wang QZ, Liu XF, Shan Y, Guan FQ, Chen Y, Wang XY, Wang M, Feng X (2012) Two new nortriterpenoid saponins from Salicornia bigelovii Torr. and their cytotoxic activity. Fitoterapia 83:742–749. doi:10.1016/j.fitote.2012.02.013
  • Wang L, Liang W, Xing J, Tan F, Chen Y, Huang L, Cheng CL, Chen W (2013) Dynamics of chloroplast proteome in salt-stressed mangrove Kandelia candel (L.) Druce. J Proteome Res 12:5124–5136. doi:10.1021/pr4006469
  • Zhang T, Gong H, Wen X, Lu C (2010) Salt stress induces a decrease in excitation energy transfer from phycobilisomes to photosystem II but an increase to photosystem I in the cyanobacterium Spirulina platensis. J Plant Physiol 167:951–958. doi:10.1016/j. jplph.2009.12.020
  • Zhou F, Liu S, Hu Z, Kuang T, Paulsen H, Yang C (2009) Effect of monogalactosyl diacylglycerol on the interaction between photosystem II core complex and its antenna complexes in liposomes of thylakoid lipids. Photosynth Res 99:185–193. doi:10.1007/s11120-008-9388-9
  • Zhou YJ, Gao F, Li XF, Zhang J, Zhang JF (2010) Alterations in phosphoproteome under salt stress in Thellungiella roots. Chinese Sci Bull 55:3673–3679. doi:10.1007/s11434-010-4116-1
  • Zhou F, Hua C, Zheng CM (2014a) Isolation and identification of photosystem II protein of Salicornia bigelovii Torr. Zhi Wu Sheng Li Xue Bao (in Chinese) 50:563–566. doi:10.13592/j. cnki.ppj.2013.0495
  • Zhou F, Qiu NW, Gu ZJ, Zhang BJ, Hua C (2014b) Thermal stability studies of photosystem II complexes reconstituted into phosphatidylcholine liposomes. Russ J Plant Physiol 61:26–32. doi:10. 1134/S1021443714010191

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7d0d460a-b4c0-4aa5-b3b5-fb0af9794362
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.