PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 24 | 4 |

Tytuł artykułu

Desiccation-tolerant rhizobacteria from Cholistan desert, Pakistan, and their impact on Zea mays L.

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Five desiccation-tolerant rhizobacteria (Brevibacterium frigoritolerans-LPS1B, Bacillus subtilis-CHFT15, B. subtilis-CHFT12, B. subtilis-CH13, and Pseudomonas stutzeri-CHP413A) isolated from Pakistan’s Cholistan desert were characterized on the basis of morphological, biochemical, and 16S rDNA ribotyping. The desiccation tolerance was checked at various relative humidity levels (5, 23, and 100%) for a period of 1-40 days. Heavy metal and antibiotic resistance, auxin, cytokine, siderophore, hydrogen cyanide production, and phosphate solubilization of select bacterial isolates was also investigated. Pot experiments with corn in sandy and pure soil were also carried out to check the plant growth-promoting potential of select strains after 90 days of growth. After harvest, various growth parameters like seed germination, root and shoot length, number of leaves, dry weight per gram fresh weight, and chlorophyll contents were determined. The inoculation of P. stutzeri-CHP413A resulted in 3, 33,12, and 37% increases in seed germination, number of leaves, shoot and root length, and dry weight·g⁻¹ fresh weight, respectively, in sandy soil (p<0.05).

Słowa kluczowe

Wydawca

-

Rocznik

Tom

24

Numer

4

Opis fizyczny

p.1773-1781,fig.,ref.

Twórcy

autor
  • Department of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
autor
  • Department of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
autor
  • Department of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan

Bibliografia

  • 1. BALSER T. C., KINZIG A. P., FIRESTONE M. K. Linking soil microbial communities and ecosystem functioning. In: KINZIG A. P., PACAL S. W., TILMAN D. (Eds). The Functional Consequences of Biodiversity: Empirical Progress and Theoretical Extensions, Princeton University Press, Princeton, NJ, pp. 265, 2001.
  • 2. GLICK B. R., PENROSE D. M., LI J. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J. Theor. Biol. 190, 63, 1998.
  • 3. CHENG Z., PARK E., GLICK B. R. 1-Aminocyclopropape-1-carboxylate deaminase from Pseudomonas putida UW4 facilitate the growth of canola in the presence of sat. Can. J. Microbiol. 53, 912, 2007.
  • 4. PETTERSSON M. Factors affecting rate of change in soil bacterial communities. Doctoral thesis Lund University Gothorvm Caroline Sweden, 2004.
  • 5. LIU L., KLOEPPER J. W., TUZUN S. Induction of systemic resistance in cucumber against bacterial angular leaf spot by plant growth-promoting rhizobacteria. Phytopathology. 85, 843, 1995.
  • 6. ALI S., CHARLES T. C., GLICK B. R. Delay of flower senescence by bacterial endophytes expressing 1-aminocyclopropane-1-carboxylate deaminase. J. Appl. Microbiol. 113, 1365, 2012.
  • 7. CHEN L., DODD I. C., THEOBALD J. C., BELIMOV A. A., DAVIES W. J. The rhizobacterium Variovorax paradoxus 5C-2 containing ACC deaminase promotes growth and development of Arabidopsis thaliana via an ethylene-dependent pathway. J. Exp. Bot. 64, 1565, 2013.
  • 8. GLICK B. R., PENROSE D. M., LI J. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J. Theor. Biol. 190, 63, 1998.
  • 9. ZAHIR A. Z., GHANI U., NAVEED M., NADEEM S. M., ASGHAR H. N. Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salts stressed conditions. Arch. Microbiol. 191, 415, 2009.
  • 10. GRICHKO V. P., GLICK B. R. Amelioration of flooding stress by ACC deaminase containing plant growth-promoting bacteria. Plant Physiol. Biochem. 39, 11, 2001.
  • 11. MAYAK S., TIROSH T., GLICK B. R. Plant growth-promoting bacteria that confer resistance to water stresses in tomato and pepper. Plant Sci. 166, 525, 2004.
  • 12. YANG Z., WU Y. R., LI Y., LING H. Q., CHU C. C. OsMT1a a type 1 metallothionein plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Mol. Biol. 70, 219, 2009.
  • 13. KLOEPPER J., RYU C. M., ZHANG S. Induce systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology. 94, 1259, 2004.
  • 14. KODIKARA J., COSTA S. Desiccation Cracking in Clayey Soils: Mechanisms and Modelling In: LALOUI L., FERRARI A. (Eds) Multiphysical Testing of Soils and Shales. 21-32 Springer, Berlin, Heidelberg, pp. 21-32, 2013.
  • 15. WANG X. Q., YANG P. F., LIU Z., LIU W. Z., HU Y., CHEN H., HE Y. K. Exploring the mechanism of Physcomitrella patens desiccation tolerance through a proteomic strategy. Plant Physiol. 149, 1739, 2009.
  • 16. YILMAZ M., CELIK G. Y., ASLIM B., ONBASILI D. Influence of carbon sources on the production and characterization of the exopolysaccharide (EPS) by Bacillus sphaericus 7055 Strain. J. Polym. Environ. 20, 152, 2012.
  • 17. BASHAN Y., HOLGUIN G., DE-BASHAN L. E. Azospirillum-plant relationships: physiological molecular agricultural and environmental advances. Can. J. Microbiol. 50, 521, 2004.
  • 18. RODRÍGUEZ-SALAZAR J., SUÁREZ R., CABALLERO-MELLADO J., ITURRIAGA G. Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. FEMS Microbiol. Lett. 296, 52, 2009.
  • 19. DONATI A. J., LEE H. I., LEVEAU J. H. J., CHANG W. S. Effects of indole-3-acetic acid on the transcriptional activities and stress tolerance of Bradyrhizobium japonicum. PLOS ONE. 8, 76559, 2013.
  • 20. SHAHZADI I., AHMED R., HASSAN A., SHAH M. M. Optimization of DNA extraction from seeds and fresh leaf tissues of wild marigold (Tagetes minuta) for polymerase chain reaction analysis. Genet. Mol. Res. 9, 386, 2010.
  • 21. AKIYOSHI D. E., REGIER D. A., GORDON M. P. Cytokinin Production by Agrobacterium and Pseudomonas sp. J. Bacteriol. 169, 4242, 1987.
  • 22. TANG W. Y., BORNER J. Enzymes involved in synthesis and breakdown of indoleacetic acid In: PAECH K., TRACEY M.V., (Eds) Modern Methods of Plant Analysis. Gohingen, Heidelberg, Springer Verlag, pp. 238-241, 1979.
  • 23. LORCK H. Production of hydrocyanic acid by bacteria. Physiol. Plant. 1, 142, 1948.
  • 24. AHMAD F., AHMAD I., KHAN M. S. Screening of freeliving rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res. 168, 173, 2008.
  • 25. LOUDEN B. C., HAARMANN D., LYNNE A. Use of blue agar cas assay for siderophore detection. J. Microbiol. Biol. Educ. 12, 2011.
  • 26. DUBOIS M., GILLES K., HAMILTON J., REBERS P., SMITH F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350, 1956.
  • 27. VERHOEF R. P. Structural characterization and enzymatic degradation of exopolysaccharides involved in paper mill slime deposition. Ph.D Thesis Wageningen University Netherlands, 2005.
  • 28. TANGAHU B. V., ABDULLAH S. R. S., BASRI H., IDRIS M., ANUAR N., MUKHLISIN M. A review on heavy metals (As, Pb and Hg) uptake by plants through phytoremediation. Int. J. Chem. Eng. 2011, 939161, 2011.
  • 29. RANGABHASHIYAM S., ANU N., SELVARAJU N. Biosorption of heavy metals using low cost agricultural by products. Res. J. Chem. Environ. 17, 112, 2013.
  • 30. OLDROYD G. E. D. Nodules and Hormones. Plant Sci. 315, 52, 2007.
  • 31. DEVI K. K., SETH N., KOTHAMASI S., KOTHAMASI D. Hydrogen cyanide-producing rhizobacteria kill subterranean termite Odontotermes obesus (rambur) by cyanide poisoning under in vitro conditions. Curr. Microbiol. 54, 74, 2007.
  • 32. LORTEAU M. A., FERGUSON B. J., GUINEL F. C. Effects of cytokinin on ethylene production and nodulation in pea (Pisum sativum) cv Sparkle. Physiol. Plant. 112, 421, 2001.
  • 33. KANG S. M., JOO G. J., HAMAYUN M., SHIN D. H., KIM H. Y., HONG J. K., LEE I. J. Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol. Lett. 31, 277, 2009.
  • 34. KO K. W., OKADA K., KOGA J., JIKUMARU Y., NOJIRI H., YAMANE H. Effects of cytokinin on production of diterpenoid phytoalexins in rice. J. Pest. Sci. 35, 412, 2010.
  • 35. SANDHYA V., ALI S. K. Z., GROVER M., REDDY G., VENKATESWARLU B. Alleviation of drought stress effects in sunflower seedlings by exopolysaccharide producing Pseudomonas putida strain P45. Biol. Fert. Soil 46, 17, 2009
  • 36. BREEDVELD M. W., ZEVENHUIZEN L. P. T. M., ZEHNDER A. J. B. Osmotically induced oligo and polysaccharide synthesis by Rhizobium meliloti SU-47. J. Gen. Microbiol. 136, 2511, 1991.
  • 37. LLORET J., WULFF B. B., RUBIO J. M., DOWNIE J. A., BONILLA I., RIVILLA R. Exopolysaccharide II production is regulated by salt in the halotolerant strain Rhizobium meliloti EFB1. Appl. Environ. Microbiol. 64, 1024, 1998.
  • 38. MAH T. F., PITTS B., PELLOCK B., WALKER G. C., STEWART P. S., O’TOOLE G. A. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426, 306, 2003.
  • 39. POTTS M. Desiccation tolerance of prokaryotes. Microbiol. Rev. 58, 755, 1994.
  • 40. RINAUDO M. Role of substituents on the properties of some polysaccharides. Biomacromolecules. 5, 1155, 2004.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7d0aa496-8600-4a26-b37c-3d4c2a9939b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.