Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 6 |

Tytuł artykułu

Characterization of size distribution and concentration of atmospheric particles during summer in Zhuzhou, China

Warianty tytułu

Języki publikacji



In order to provide a sound basis for the performance evaluation of a local government’s air pollution prevention and abatement measures, the mass concentrations of PM2.5 and PM10 and the concentrations of different sized particles were measured in August 2013. Meanwhile, the influencing factors and sources of atmospheric particulate matters were analyzed by combining meteorological factors and gaseous pollutants. The results indicated that PM2.5 and PM10 in Zhuzhou were (30.3±12.2) μg·m⁻³ and (56.4±26.6) μg·m⁻³, respectively. The mean values of the particle number concentration in the size range of 0.5~1 μm and 1~2.5 μm on sunny days were (121.2±75.9) cm⁻³ and (6.8±3.7) cm⁻³, respectively, whereas in the rainy days they sharply increased to (868.7±262.1) cm⁻³ and (347.9±238.6) cm⁻³, which accounted for 71.0% and 28.4% of the total number of concentrations, respectively. Backward trajectory analysis demonstrated that the air masses in Zhuzhou city mainly came from three directions: southeast (52.2%), southwest (24.7%), and northeast (23.1%). Although accounting for a minor fraction, the northeast air mass had the largest effect on particle concentrations in Zhuzhou and also carried a lot of gaseous primary pollutants.

Słowa kluczowe








Opis fizyczny



  • School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
  • Shandong Provincial Co-Innovation Center of Green Building, Jinan, China
  • School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
  • State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
  • State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
  • State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
  • Department of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao, China


  • 1. Nel A., Xia T., Mädler L., Li N. Toxic potential of materials at the nanolevel. Science, 311 (5761), 622, 2006.
  • 2. Rd P.C., Burnett R.T., Thurston G.D., Thun M.J., Calle E.E., Krewski D., Godleski J.J. Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation, 109 (1), 71, 2004.
  • 3. Shen L., Wang H., Lü S., Li L., Yuan J., Zhang X., Tian X., Tang Q. Observation of aerosol size distribution and new particle formation at a coastal city in the Yangtze River Delta, China. Science of the Total Environment, 565, 1175, 2016.
  • 4. Tao M., Chen L., Xiong X., Zhang M., Ma P., Tao J., Wang Z. Formation process of the widespread extreme haze pollution over northern China in January 2013: Implications for regional air quality and climate. Atmospheric Environment, 98, 417, 2014.
  • 5. Wolf K., Schneider A., Breitner S., Meisinger C., Heier M., Cyrys J., Kuch B., Von S.W., Peters A. Associations between short-term exposure to particulate matter and ultrafine particles and myocardial infarction in Augsburg, Germany. International Journal of Hygiene & Environmental Health, 218 (6), 535, 2015.
  • 6. Wang H., An J., Shen L., Zhu B., Chen P., Liu Z., Liu X., Duan Q., Xuan L., Wang Y. Mechanism for the formation and microphysical characteristics of submicron aerosol during heavy haze pollution episode in the Yangtze River Delta, China. Science of the Total Environment, 490, 501, 2014.
  • 7. Alföldy B., Giechaskiel B., Hofmann W., Drossinos Y. Size-distribution dependent lung deposition of diesel exhaust particles. Journal of Aerosol Science, 40 (8), 652, 2009.
  • 8. Bullard R.L., Singh A., Anderson S.M., Lehmann C.M.B., Stanier C.O. 10-Month characterization of the aerosol number size distribution and related air quality and meteorology at the Bondville, IL Midwestern background site. Atmospheric Environment, 154, 348, 2017.
  • 9. Huang X., Wang C., Peng J., He L., Cao L., Qiao Z., Jie C., Wu Z., Min H. Characterization of particle number size distribution and new particle formation in Southern China. Journal of Environmental Sciences, 51, 342, 2016.
  • 10. Zhang X., Zhang Y., Sun J., Zheng X., Li G., Deng Z. Characterization of particle number size distribution and new particle formation in an urban environment in Lanzhou, China. Journal of Aerosol Science, 103, 53, 2016.
  • 11. Zhang T., Tao J., Wang B.J., Zhang R.J. Research on size distribution of particles and its impact on visibility in urban Guangzhou during spring. Journal of the Graduate School of the Chinese Academy of Sciences, 27 (3), 331, 2010 [In Chinese].
  • 12. Lang F.L., Yan W.Q., Zhang Q., Cao J. Size distribution of atmospheric particle number in Beijing and association with meteorological conditions. China Environmental Science, 33 (7), 1153, 2013 [In Chinese].
  • 13. Zhao S.P., Yu Y., Chen J.B., Liu N., He J.J. Size distribution properties of atmospheric aerosol particles during summer and autumn in Lanzhou. Environmental Science, 33 (3), 687, 2012 [In Chinese].
  • 14. Li R.P., Shi J.H., Zhang D.Z. Size distribution of atmospheric particles in number concentration in relation to meteorological conditions and air mass origins in Qingdao in spring. China Environmental Science, 32 (8), 1392, 2012 [In Chinese]
  • 15. Yang Q., Zhang K., Cai F.H., Li J.S., Zhou G.Z., Zheng Z.L. Study on the pollution characteristics of atmospheric particles and heavy metals in autumn in Chang-Zhu-Tan metropolitan area. Research of Environmental Sciences, 26 (6), 590, 2013 [In Chinese].
  • 16. Zhang K., Chai F., Zheng Z., Yang Q., Li J., Wang J., Zhang Y. Characteristics of atmospheric particles and heavy metals in winter in Chang-Zhu-Tan city clusters, China. Journal of Environmental Sciences, 26 (1), 147, 2014.
  • 17. Price H.D., Stahlmecke B., Arthur R., Kaminski H., Lindermann J., Däuber E., Asbach C., Kuhlbusch T.A.J., Bérubé K.A., Jones T.P. Comparison of instruments for particle number size distribution measurements in air quality monitoring. Journal of Aerosol Science, 76 (5), 48, 2014.
  • 18. Liu Z.R., Sun Y., Li L., Wang Y.S. Particle mass concentrations and size distribution during and after the Beijing Olympic Games. Environmental Science, 32 (4), 913, 2011 [In Chinese].
  • 19. Wang Y.Q., Zhang X.Y., Draxler R.R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from lon-gterm air pollution measurement data. Environmental Modelling & Software, 24 (8), 938, 2009.
  • 20. Fang X., Bi X., Xu H., Wu J., Zhang Y., Feng Y. Source apportionment of ambient PM10 and PM2.5 in Haikou, China. Atmospheric Research, 190, 1, 2017.
  • 21. Dorling S.R., Davies T.D., Pierce C.E. Cluster analysis: A technique for estimating the synoptic meteorological controls on air and precipitation chemistry-Method and applications. Atmospheric Environment, 26 (14), 2575, 1992.
  • 22. Wang Q., Jiang N., Yin S., Li X., Yu F., Guo Y., Zhang R. Carbonaceous species in PM2.5 and PM10 in urban area of Zhengzhou in China: Seasonal variations and source apportionment. Atmospheric Research, 191, 1, 2017.
  • 23. Wang X., Chen J., Cheng T., Zhang R., Wang X. Particle number concentration, size distribution and chemical composition during haze and photochemical smog episodes in Shanghai. Journal of Environmental Sciences, 26 (9), 1894, 2014.
  • 24. Wang A.P., Zhu B., Yin Y., Jin L.J., Zhang L. Aerosol number concentration properties and potential sources areas transporting to the top of mountain Huangshan in summer. China Environmental Science, 34 (4), 852, 2014 [In Chinese].
  • 25. Mikhailov E.F., Mironov G.N., Pöhlker C., Chi X., Krüger M.L., Shiraiwa M., Förster J.D., Pöschl U., Vlasenko S.S., Ryshkevich T.I., Weigand M., Kilcoyne A.L.D., Andreae M.O. Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign. Atmospheric Chemistry and Physics, 15, 8847, 2015.
  • 26. Chen P., Wang T., Lu X., Yu Y., Kasoar M., Xie M., Zhuang B. Source apportionment of size-fractionated particles during the 2013 Asian Youth Games and the 2014 Youth Olympic Games in Nanjing, China. Science of the Total Environment, 579, 860, 2016.
  • 27. Pang X., Mu Y., Lee X., Zhang Y., Xu Z. Influences of characteristic meteorological conditions on atmospheric carbonyls in Beijing, China. Atmospheric Research, 93 (4), 913, 2009.
  • 28. Pateraki S., Maggos T., Michopoulos J., Flocas H. A., Asimakopoulos D.N., Ch, V. Ions species size distribution in particulate matter associated with VOCs and meteorological conditions over an urban region. Chemosphere, 72 (3), 496, 2008.
  • 29. Zhao S., Yu Y., Yin D., He J. Meteorological dependence of particle number concentrations in an urban area of complex terrain, Northwestern China. Atmospheric Research, 164-165, 304, 2015.
  • 30. Su J., Zhao P.S., Chen Y.N. Characteristics of number concentration size distributions of aerosols under different weather processes in Beijing. Environmental Science, 37 (4), 1208, 2016 [In Chinese].
  • 31. Wu D., Cao S., Tang L., Xia J., Lu J., Liu G., Yang M., Li F., Gai X. Variation of Size Distribution and the Influencing Factors of Aerosol in Northern Suburbs of Nanjing. Environmental Science, 37 (9), 3268, 2016 [In Chinese].
  • 32. Dao X., Zhang L.L., Wang C., Chen Y., Lyu Y.B., Teng E.J. Characteristics of mass and ionic compounds of atmospheric particles in winter and summer of Beijing-Tianjin-Hebei area, China. Environmental Chemistry, 34 (1), 60, 2015 [In Chinese].
  • 33. Zhang L.L., Dao X., Wang C., Jin X.W., Teng E.J., Lu Y.B. Characterization of air particulate matters and elements in four national background locations, China. Environmental Chemistry, 34 (1), 70, 2015 [In Chinese].
  • 34. Chen G., Liu J.Y., Huangfu Y.Q., Wang H.T., Shi G.L., Tian Y.Z., Zhu Y., Li Q., Feng Y.C. Seasonal variations and source apportionment of ambient PM10 and PM2.5 at urban area of Hefei, China. China Environmental Science, 36 (7),1938, 2016 [In Chinese].
  • 35. Zhang L.H., Wu J.C., Bao Y.H., Xu R., Xu K. The analysis of pollution level of particles PM10 and PM2.5 in Wuhan and Xi’an. Air Pollution Control, 33 (3), 73, 2015 [In Chinese].
  • 36. Luo Y.P., Liu M.J., Gan J., Zhou X.T., Jiang M., Yang R.B. Correlation study on PM2.5 and O₃ mass concentrations in ambient air by taking urban cluster of Changsha,Zhuzhou and Xiangtan as an example. Journal of Safety and Environment, 15 (4), 313, 2015 [In Chinese].
  • 37. Xie C., Zhang W.J., Yang W., Li W., Wang X.H., Zhao X.Y., Bai Z.P. Pollution characteristics and health risk analysis of heavy metals in PM10 and PM2.5 in a triple cities area in Hunan Province. Journal of Environmental Engineering Technology, 6 (2), 147, 2016 [In Chinese].
  • 38. Squizzato S., Cazzaro M., Innocente E., Visin F., Hopke P.K., Rampazzo G. Urban air quality in a mid-size city - PM2.5 composition, sources and identification of impact areas: From local to long range contributions. Atmospheric Research, 186, 51, 2017.
  • 39. Qian L., Yin Y., Tong Y.Q., Wang W.W., Wei Y.X. Particle size distribution of fine particulate matter in the northern suburb of Nanjing. China Environmental Science, 28 (1), 18, 2008 [In Chinese].
  • 40. Zhuo Q.F., Jin L.J., Lin Z.Y., Wu Z.H., Kuang S.S. Observational characteristic of aerosol number concentration and size distribution at Shijiazhuang in spring season. China Environmental Science, 31 (6), 886, 2011 [In Chinese].
  • 41. Yin X., Huang Z., Zheng J., Yuan Z., Zhu W., Huang X., Chen D. Source contributions to PM2.5 in Guangdong province, China by numerical modeling: Results and implications. Atmospheric Research, 186, 63, 2017.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.