PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2016 | 75 |

Tytuł artykułu

Structural diversity and production of alder stands on former agricultural land at high altitudes

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The paper deals with the structural diversity and production of a less frequently studied type of alder stands originated on former agricultural lands in the 1950s, established partly by plantation and partly by natural succession in the area of the Krkonoše Mts. and the Orlické hory Mts. (Czech Republic). Four permanent research plots (PRP) were established at sites where Black alder (Alnus glutinosa L. Gaertn.) and Grey alder (Alnus incana L. Moench.) naturally occurs, each plot of 0.25 ha in size. The aim of the study was to evaluate the structure and development of the alder stands with respect to biodiversity, horizontal, vertical and species structure, diameter increment with emphasis on climate factors, and the quantity and quality of timber production. The results document low diversification of the studied stands in the PRPs. The horizontal structure is defined as random and clumped at sites at the highest altitude with high water table. The number of living trees with DBH ≥ 4 cm ranges between 556 to 828 trees ha-1 with the relative stand density index (SDI) 0.67–0.77. The stand volume ranges from 247 to 393 m3 ha–1, and decreases with higher altitudes. Low temperatures is limiting factor for radial growth in the high mountain areas, respectively low precipitation in the middle lands. Owing to a rather specific site character, as especially the spring area, the stands exhibit only average production, but the production quality is generally high. The quality timber is suitable for industrial use; the rot-affected trunk base parts usable for fuel represent only approximately 16%.

Wydawca

-

Czasopismo

Rocznik

Tom

75

Opis fizyczny

p.31-44,fig.,ref.

Twórcy

autor
  • Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamycka 129, 165 21 Prague 6 - Suchdol, Czech Republic
autor
  • Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamycka 129, 165 21 Prague 6 - Suchdol, Czech Republic
autor
  • Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamycka 129, 165 21 Prague 6 - Suchdol, Czech Republic
autor
  • Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamycka 129, 165 21 Prague 6 - Suchdol, Czech Republic
autor
  • Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamycka 129, 165 21 Prague 6 - Suchdol, Czech Republic
autor
  • Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamycka 129, 165 21 Prague 6 - Suchdol, Czech Republic
autor
  • Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamycka 129, 165 21 Prague 6 - Suchdol, Czech Republic
  • Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
autor
  • Care Department of National Park, The Krkonose Mountains National Park Administration, Dobrovskeho 3, 543 01 Vrchlabí, Czech Republic

Bibliografia

  • Anderson KL & Leopold DJ (2002) The role of canopy gaps in maintaining vascular plant diversity at a forested wetland in New York State. Journal of the Torrey Botanical Society 129: 238–250.
  • Anthelme F, Grossi JL, Brun JJ & Didier L (2001) Consequences of green alder expansion on vegetation changes and arthropod communities removal in the northern French Alps. Forest Ecology and Management 145: 57–65.
  • Aosaar J, Varik M, Lõhmus K & Uri V (2011) Stemwood density in young grey alder and hybrid alder stands growing on abandoned agricultural land. Baltic Forestry 17: 256–261.
  • Aosaar J, Varik M & Uri V (2012) Biomass production potential of grey alder (Alnus incana (L.) Moench.) in Scandinavia and Eastern Europe: a review. Biomass and Bioenergy 45: 11–26.
  • Battaglia LL & Sharitz RR (2006) Responses of floodplain forest species to spatially condensed gradients: a test of the flood-shade tolerance tradeoff hypothesis. Oecologia 147: 108–118.
  • Bialobok S et al. (1980) Olsze – Alnus Mill. Państwowe Wydawnictwo Naukowe, Warszawa, Poznań, Poland.
  • Biondi F & Waikul K (2004) Dendroclim 2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Computers and Geosciences 30: 303–311.
  • Brock TCM, Jongerhuis R, van der Molen PC & Ran ETH (1989) A comparison of the history and present state of an Alnus glutinosa and Betula pubescens dominated patch of wetland forest in the nature reserve “Het Molenven”, The Netherlands. Acta Botanica Neerlandica 38: 425–437.
  • Bugala M & Pittner J (2010) Analýza štrukturálnej diversity porastov jelše lepkavej (Alnus glutinosa (L.) Gaertn.) na území VŠLP TU vo Zvolene. Acta Facultatis Forestalis Zvolen 52: 43–54.
  • Bugala M & Migas M (2011) Premenlivosť kvalitatívnych znakov kmeňov, (Alnus incana (L.) Moench.) v oblasti Poľany. Acta Facultatis Forestalis Zvolen 53: 7–18.
  • Bugala M & Balanda M (2014) Dynamika radiálneho rastu vybranej populácie jelše sivej (Alnus incana [L.] Moench.) v oblasti východných Karpát: Proceedincs of Central European Silviculrure (ed. By I Štefančík) Narodne lesnicke centrum Zvolen, pp. 83–89.
  • Campbell JE, Lobell DB, Genova RC & Field CB (2008) The global potential of bioenergy on abandoned agriculture lands. Environmental Science & Technology 242: 5791–5794.
  • Cech T (1998) Phytophthora decline of alder (Alnus spp.) in Europe. Journal Arboriculture 24: 339–343.
  • Černý K & Strnadová V (2010) Phytophthora alder decline: disease symptoms, causal agent and its distribution in the Czech Republic. Plant Protection Science 46: 12–18.
  • Černý Z, Lokvenc T & Neruda J (1995) Zalesňování nelesních půd. Institut výchovy a vzdělávání Ministerstva zemědělství ČR: 55, Prague, Czech Republic.
  • Claessens H (2003) The alder populations of Europe. Forestry Commission Bulletin 126: 5–14.
  • Claessens H (2005) L’aulne glutineux. Ses stations et sa sylviculture. ASBL ForêtWallonne, France.
  • Claessens H, Oosterbaan A, Savill P & Rondeux J (2010) A review of the characteristics of black alder (Alnus glutinosa (L.) Gaertn.) and their implications for silvicultural practices. Forestry 83: 163–173.
  • Claessens H, Thibaut A & Rondeux J (2002) Quelques resultants prometteurs pour une sylviculture de l’Aulne glutineux en Wallonie. Revue Forestière Française 54: 259–270.
  • Clark PJ & Evans FC (1954) Distance to nearest neighbor as a measure of spatial relationship in populations. Ecology 35: 445–453.
  • David FN & Moore PG (1954) Notes on contagious distributions in plant populations. Annals of Botany 18: 47–53.
  • Desplanque C, Rolland C & Schweingruber FH (1999) Influence of species and abiotic factors on extréme tree ring modulation: Piceaabies and Abies alba in Tarentaise and Maurienne (French Alps). Trees 13: 218–227.
  • Dittert K, Wötzel J & Sattelmacher B (2006) Responses of Alnus glutinosa to anaerobic conditions – mechanisms and rate of oxygen flux into the roots. Plant Biology 8: 212–223.
  • Douda J, Čejková A, Douda K & Kochánková J (2009) Development of alder carr after the abandonment of wet grasslands during the last 70 years. Annals of Forest Science 66: 712–725.
  • Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Ulmer, Stuttgart, Germany.
  • Eschenbach C & Kappen L (1999) Leaf water relations of black alder [Alnus glutinosa (L.) Gaertn.] growing at neighbouring sites with different water regimes. Trees 14: 28–38.
  • European Communities (2003) Sustainable forestry and the European Union. Initiatives of the European Commission: 60.
  • FAO (2008) Fighting food inflation through sustainable investment: grain production and export potential in CIS countries e rising food prices: causes, consequences and policy responses. Rome: Food and Agriculture Organization of the United Nations; 2008 March 10. 16 p. Sponsored by the European Bank for Reconstruction and development and the FAO.
  • Forest Management Institute (2003) Inventarizace lesů, Metodika venkovního sběru dat. Brandýs nad Labem, Czech Republic.
  • Füldner K (1995) Strukturbeschreibung von Buchen-Edellaubholz-Mischwäldern, Dissertation Forstliche Fakultät Göttingen, Cuvillier Verlag, Göttingen, Germany.
  • Glenz C, Schlaepfer R, Iorgulescu I & Kienast F (2006) Flooding tolerance of Central European tree and shrub species. Forest Ecology and Management 235: 1–13.
  • Grissino-Mayer HD, Holmes RL & Fritts HC (1992) International tree-ring data bank program library: user´s manual. Laboratory of Tree-Ring Research, University of Arizona, Tuscon, USA.
  • Güsewell S & Le Nédic C (2004) Effects of winter mowing on vegetation succession in a lakeshore fen. Applied Vegetation Science 7: 41–48.
  • Henebry GM (2009) Global change: Carbon in idle croplands. Nature 457: 1089–1090.
  • Holubík O, Podrázský V, Vopravil J, Khel T & Remeš J (2014) Effect of Agricultural Lands Afforestation and Tree Species Composition on the Soil Reaction, Total Organic Carbon and Nitrogen Content in the Uppermost Mineral Soil Profile. Soil and Water Research 9: 192–200.
  • Hubbes M (1983) A review of the potential diseases of Alnus and Salix in energy plantations. Report No.5, international energy agency/FE program group B. Maple, ON, Canada: Ministry of Natural Resources: 35.
  • Hytönen J & Saarsalmi A (2009) Long-term biomass production and nutrient uptake of birch, alder and willow plantations on cut-away peatland. Biomass and Bioenergy 33: 1197–1211.
  • Hytönen J & Saarsalmi A (2015) Biomass production of coppiced grey alder and the effect of fertilization. Silva Fennica 49: 1–16.
  • Immler T (2004) Waldbauliches Konzept zur Pflege der Schwarzerle. Bayerische Landesanstalt für Wald und Forstwirtschaft, Beiträge zur Schartzerle. LWF Wissen 42: 27–30.
  • Iremonger SF & Kelly DL (1988) The responses of four Irish wetland tree species to raised soil water levels. New Phytologist 109: 491–497.
  • Jaehne SC & Dohrenbusch A (1997) Ein Verfahren zur Beurteilung der Bestandesdiversität. Forstwissenschaftliches Centralblatt 116: 333–345.
  • Johansson T (2005) Stem volume equations and basic density for grey alder and common alder in Sweden. Forestry 78: 249–262.
  • Johansson T (1999) Dry matter amounts and increment in 21- to 91-year-old common alder and grey alder and some practical implications. Canadian Journal of Forest Research 29: 1679–1690.
  • Kacálek D, Dušek D, Novák J & Bartoš J (2013) The impact of juvenile tree species canopy on properties of new forest floor. Journal of Forest Science 59: 230–237.
  • Knibbe B (2007) PAST4: personal analysis system for treering research, Version 4.2. SCIEM, Vienna, Austria.
  • Korpeľ Š (1991) Dynamika prírodného jelšového lesa v ŠPR Jurský Šúr. Technická Univerzita Zvolen. Acta facultatis forestralis 33: 91–113.
  • Krstinič A, Gračan J & Kajba D (2002) Alnus spp. genetic resources conservation strategy: Noble Hardwoods Network, Report of the fourth meeting, 4–6 September 1999, Gmunden, Austria, and the fifth meeting, 17–19 May 2001, Blessington, Ireland. (ed. by J Turok, G Eriksson, K Russell & S Borelli) IPGRI, Rome, Italy, pp. 44–49.
  • Krzaklewski W, Pietrzykowski M & Woś B (2012) Survival and growth of alders (Alnus glutinosa (L.) Gaertn. and Alnus incana (L.) Moench) on fly ash technosols at different substrate improvement. Ecological Engineering 49: 35–40.
  • Laganis J, Peckov A & Debeljak M (2008) Modeling radial growth increment of black alder (Alnus glutinosa (L.) Gaertn.) tree. Ecological Modelling 215: 180–189.
  • Lebourgeois F, Bréda N, Ulrich E & Granier A (2005) Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French Permanent Plot Network (RENECOFOR). Trees 19: 385–401.
  • Linderholm HW (1999) Climatic and anthropogenic influences on radial growth of Scots Pine at Hanvedsmossen, a raised peat bog, in south central Sweden. Geografiska Annaler Series A Physical Geography 81: 75–86.
  • Linderholm HW & Leine M (2004) An assessment of twentieth century tree-cover changes on a southern Swedish peatland combining dendrochronoloy and aerial photograph analysis. Wetlands 24: 357–363.
  • Lucassen ECHET, Smolders AJP, Boedeltje G, van den Munckhof PJJ & Roelofs JGM (2006) Groundwater input affecting plant distribution by controlling ammonium and iron availability. Journal of Vegetation Science 17: 425–434.
  • Lukáčik I & Bugala M (2005) Premenlivosť, rastová charakteristika a ekológia jelše lepkavej (Alnus glutinosa (L.) Gaertn.) a jelše sivej (Alnus incana (L.) Moench.) na Slovensku. Vedecké a pedagogickéaktuality. Technická Univerzita Zvolen, 68, Slovakia.
  • McVean DN (1956) Ecology of Alnus glutinosa (L.) Gaertn. IV. Root system. Journal of Ecology 44: 219–225.
  • Mountford MD (1961) On E.C. Pielou’s index of non-randomness. Journal of Ecology 49: 271–275.
  • Näslund M (1936) Skogsförsöksanstaltens gallringsförsök i tallskog. Meddelanden från Statens Skogsförsöksanstalt 29. Stockholm, Swedish.
  • Orzeł S, Forgiel M, Socha J & Ochał W (2005) Biomass and annual production of common alder stands of the Niepołomice Forest. Electronic Journal of Polish Agricultural Universities: Forestry 8: 1–25.
  • Petráš R & Pajtík J (1991) Sústava česko-slovenských objemových tabuliek drevín. Lesnický časopis 37: 1: 49–56.
  • Pielou EC (1959) The use of point-to-plant distances in the study of the pattern of plant populations. Journal of Ecology 47: 607–613.
  • Pokorný P, Klimešová J & Klimeš L (2000) Late Holocene history and vegetation dynamics of a floodplain alder carr: a case study from eastern Bohemia, Czech Republic. Folia Geobotanica 35: 43–58.
  • Pretzsch H (2006) Wissen nutzbar machen für das Management von Waldökosystemen. Allgemeine Forstzeitschrift/Der Wald 61: 1158–1159.
  • Reineke LH (1933) Perfecting a stand-density index for even-aged forests. Journal of Agricultural Research 46: 627–638.
  • Remeš J & Zeidler A (2014) Production potential and wood quality of Douglas fir from selected sites in the Czech republic. Wood Research 59: 509–520.
  • Ripley BD (1981) Spatial statistics. 1st Ed. New York, John Wiley & Sons, USA.
  • Rodríguez-González PM, Stella JC, Campelo F, Ferreira MT & Albuquerque A (2010) Subsidy or stress? Tree structure and growth in wetland forests along a hydrological gradient in Southern Europe. Forest Ecology and Management 259: 2015–2025.
  • Rodríguez-González PM, Campelo F, Albuquerque A, Rivaes R, Ferreira T & Pereira JS (2014) Sensitivity of black alder (Alnus glutinosa (L.) Gaertn.) growth to hydrological changes in wetland forests at the rear edge of the species distribution. Plant Ecology 215: 233–245.
  • Roy S, Khasa DP & Greer CW (2007) Combining alders, frankiae and mycorrhizae for the revegetation and remediation of contaminated ecosystems. Canadian Journal of Botany 85: 237–251.
  • Saarsalmi A, Palmgren K & Levula T (1991) Harmaalepän vesojen biomassan tuotos ja ravinteiden käyttö. Folia Forestalia 768: 1–25.
  • Schober R (1995) Ertragstafeln wichtiger Baumarten. Frankfurt a. m., J.D. Sauerländer’s Verlag, Germany.
  • Schwappach A (1919) Neuere untersuchungen über den wachstumsgang der Schwarzerlen-Bestände. Zeitschrift für Forst- und Jagdwesen 51: 1–190.
  • Schweingruber FH, Eckstein D, Serre-Bachet F & Bräker OU (1990) Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia 8: 9–38.
  • Sopp L (1974) Fatömeg – szamitazi tablazatok. Budapest, Mezögazdasagi Kiado, Hungary.
  • Souček J & Špulák O (2010) Porostní charakteristiky mladých olšových porostů vzniklých sukcesí na bývalé zemědělské půdě. Zprávy lesnického výzkumu 55: 121 – 125.
  • Thibaut A, Claessens H & Rondeux J (1998) Construction de tarifs de cubage d’arbres pour l’aulne glutineux (Alnus glutinosa L. Gaertn). Biotechnologie, agronomie, société et environnement 2: 203–214.
  • Tobita H, Hasegawa SF, Tian X, Nanami S & Takeda H (2010) Spatial distribution and biomass of root nodules in a naturally regenerated stand of Alnus hirsuta (Turcz.) var. Sibirica. Symbiosis 50: 77–86.
  • Uri V, Tullus H & Lõhmus K (2002) Biomass production and nutrient accumulation in short-rotation grey alder (Alnus incana (L.) Moench) plantation on abandoned agricultural land. Forest Ecology and Management 161: 169–179.
  • Uri V, Lõhmus K, Mander Ü, Ostonen I, Aosaar J, Maddisson M, Helmisaari HS & Augustin J (2011) Long-term effects on nitrogen budget of a short-rotation grey alder (Alnus incana (L.) Moench) forest in abandoned agricultural land. Ecological Engineering 37: 920–930.
  • Uri V, Aosaar J, Varik M, Becker H, Ligi K, Padari A, Kanal A & Lõhmus K (2014) The dynamics of biomass production, carbon and nitrogen accumulation in grey alder (Alnus incana/L./Moench) chronosequence stands in Estonia. Forest Ecology and Management 327: 106–117.
  • Vacek S, Simon J, et al. (2009) Zakládání a stabilizace lesních porostů na bývalých zemědělských a degradovaných půdách. Lesnická práce, Czech Republic.
  • Vares A, Uri V, Tullus H & Kanal A (2003) Height growth of four fast-growing deciduous tree species on former agricultural lands in Estonia. Baltic Forestry 9: 2–8.
  • Warren RJ, Rossell IM & Moorhead KK (2004) Colonization and establishment of red maple (Acer rubrum) in a southern Appalachian wetland. Wetlands 24: 364–374.
  • Wolf A, Møller PF, Bradshaw RHW & Bigler J (2004) Storm damage and long-term mortality in a semi-natural, temperate deciduous forest. Forest Ecology and Management 188: 197–210.
  • Worrall JJ, Adams GC & Tharp SC (2010) Summer heat and an epidemic of Cytospora canker of Alnus. Canadian Journal of Plant Pathology 32: 376–386.
  • Yamaguchi DK (1991) A simple method for cross-dating increment cores from living trees. Canadian Journal of Forest Research 21: 414–416.
  • Yaman B (2009) Wood anatomy of ivy-hosting black alder (Alnus glutinosa Gaertn.). Dendrobiology 62: 41–45.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7c956107-d7c7-4761-841f-b434e9ac7e3b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.