PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2013 | 157 | 11 |

Tytuł artykułu

Udział węgla w związkach obronnych przed czynnikami biotycznymi u roślin drzewiastych

Treść / Zawartość

Warianty tytułu

EN
Share of carbon in defense compounds against biotic factors in woody plants

Języki publikacji

PL

Abstrakty

EN
In addition to physical defenses, chemical defenses are the most effective way to protect plants from adverse biotic factors (phytophagous insects, other herbivores and pathogenic fungi). This requires extra effort from plants to produce secondary defense metabolites at the expense of production of primary metabolites directly linked to the growth and development of plants. There are three main groups of defensive compounds (alkaloids, phenolic compounds and terpenoids). All defensive compounds are rich in carbon. Depending on the chemical formula, carbon makes up from about 40% to over 85% of the molecular weight of various defense compounds. It is not possible to calculate the total carbon mass accumulation in all defense compounds. In this paper we discuss the content of defensive compounds and carbon with respect to defense strategy of plants, functional groups of woody species (coniferous and deciduous trees), tree species, tree biomass components (leaves, branches, bark, roots, etc.) and many other internal (age of trees, age of leaves, stage of development, origin, etc.) as well as external factors, related to soil and climatic conditions

Wydawca

-

Czasopismo

Rocznik

Tom

157

Numer

11

Opis fizyczny

s.831-841,rys.,bibliogr.

Twórcy

  • Instytut Dendrologii, Polska Akademia Nauk, ul.Parkowa 5, 62-035 Kórnik
  • Instytut Dendrologii, Polska Akademia Nauk, ul.Parkowa 5, 62-035 Kórnik
  • Katedra Łowiectwa i Ochrony Lasu, Uniwersytet Przyrodniczy w Poznaniu, ul.Wojska Polskiego 72d, 60-625 Poznań

Bibliografia

  • Adams J. M., Zhang Y. 2009. Is there more insect folivory in warmer temperate climates? A latitudinal comparison of insect folivory in eastern North America. Journal of Ecology 97 (5): 933−940.
  • Agraval A. A. 2006. Macroevolution of plant defense strategies. Trends in Ecology and Evolution 22 (2): 103−109.
  • Agraval A. A., Fishbein M. 2006. Plant defense syndromes. Ecology 87 (7) Suppl. S132−149.
  • Barton K. E., Koricheva J. 2010. The ontogeny of plant defense and herbivory: Characterizing general patterns using meta−analysis. American Naturalist 175 (4): 481−493.
  • Bennett R. N., Wallsgrove R. M. 1994. Secondary metabolites in plant defence mechanisms. New Phytologist 127: 617−633.
  • Bernays E. A. 1981. Plant tannins and insect herbivores: an appraisal. Ecological Entomology 6: 353−360.
  • Bruce R. J., West C. A. 1989. Elicitation of lignin biosynthesis and isoperoxidase activity by spectic fragments in suspension cultures of castor bean. New Phytologist 91: 889−897.
  • Bryant J. P., Chapin F. S. III, Klein D. R. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivore. Oikos 40: 357−368.
  • Carmona D., Lajeunesse M. J., Johnson T. J. 2011. Plant traits that predict resistance to herbivores. Functional Ecology 25: 358−367.
  • Clancy K. M., Price P. W. 1987. Rapid herbivore growth enhances enemy attack: sublethal plant defences remain a paradox. Ecology 68 (3): 733−737.
  • Coley P. D., Barone J. A. 1996. Herbivory and plant defenses in tropical forest. Annual Review of Ecology and Systematics 27: 305−335.
  • Cowan M. M. 1999. Plant Products as Antimicrobial Agents. Clinical Microbiology Reviews 12 (4): 564−582.
  • Dominy N. J., Lucas P. W., Wright S. J. 2003. Mechanics and chemistry of rain forest leaves: canopy and understorey compared. Journal of Experimental Botany 54: 2007−2014.
  • Dyer M. I., Acra M. A., Wang G. M. 1991. Source−sink carbon relations in two Panicum coloratum ecotypes in response to herbivory. Ecology 72 (4): 1472−1483.
  • Ehrlich P. R., Raven P. H. 1964. Butterflies and plants: a study in co−evolution. Evolution 18: 586−608.
  • Endara M.−J., Coley P. D. 2011. The resource availability hypothesis revisited: a meta−analysis. Functional Ecology 25: 389−398.
  • Forkner R. E., Marquis R. J., Lill J. T. 2004. Feeny revisited: condensed tannins as anti−herbivore defences in leaf−chewing herbivore communities of Quercus. Ecological Entomology 29: 174−187.
  • Forrest G. I. 1975. Polyphenol variation in Sitka spruce. Canadian Journal of Forest Research 5: 26−37.
  • Fraenkel G. S. 1959. The raison d’étre of secondary plant substances. Science 129: 1466−1470.
  • Giertych M. J., Karolewski P., De Temmerman L. O. 1999. Foliage age and pollution alter content of phenolic compounds and chemical elements in Pinus nigra needles. Water, Air, and Soil Pollution 110 (3/4): 363−377.
  • Giertych M. J., Karolewski P., Grzebyta J., Oleksyn J. 2007. Role of chemical composition of Pinus sylvestris needles in the feeding behavior and performance of Neodiprion sertifer larvae. Forest Ecology and Management 242: 700−707.
  • Giertych M. J., Karolewski P., Żytkowiak R., Oleksyn J. 2006. Differences in defence strategies against herbivores between two pioneer tree species: Alnus glutinosa Gaertn. and Betula pendula Roth. Polish Journal of Ecology 54 (2): 181−187.
  • Glazener J. A. 1982. Accumulation of phenolic compounds in cells and formation of lignin−like polymers in cell walls of young tomato fruits after incubation with Botrytis cinerea. Physiological Plant Pathology 20: 11−25.
  • Gulmon S. L., Mooney H. A. 1986. Costs of defense and their effects on plant productivity. W: Givnish T. J. [red.]. On the economy of plant form and function. University Press, Cambridge 681−698.
  • Hanley M. E., Lamont B. B., Fairbanks M. M., Rafferty C. M. 2007. Plant structural traits and their role in antiherbivore defence. Perspectives in Plant Ecology, Evolution and Systematics 8 (4): 157−178.
  • Harborne J. B. 1997. Ekologia biochemiczna. Wydawnictwo Naukowe PWN, Warszawa.
  • Harding S. A., Jarvie M. M., Lindroth R. L., Tsai C.−J. 2009. A comparative analysis of phenylpropanoid metabolism, N utilization, and carbon partitioning in fast− and slow−growing Populus hybrid clones. Journal of Experimental Botany 60 (12): 3443−3452.
  • Haukioja E. 1990. Induced of defence in trees. Annual Review of Entomology 36: 25−42.
  • Holopainen J. K., Kainulainen P. 2004. Reproductive capacity of the grey pine aphid and allocation response of Scots pine seedlings across temperature gradients: a test hypotheses predicting outcomes of global warming. Canadian Journal of Forest Research 34: 94−102.
  • Honkanen T., Haukioja E., Kitunen V. 1999. Responses of Pinus sylvestris branches to simulated herbivory are modified by tree sink/source dynamics and by external resources. Functional Ecology 13: 126−140.
  • Iason G. R., Lennon J. J., Pakeman R. J., Thoss V., Beaton J. K., Sim D. A., Elston D. A. 2005. Does chemical composition of individual Scots pine trees determine the biodiversity of their associated ground vegetation. Ecology Letters 8: 364−369.
  • Imaji A., Seiwa K. 2010. Carbon allocation to defense, storage, and growth in seedlings of two temperate broad−leaved tree species. Oecologia 16: 273−281.
  • Jagodziński A. M., Jarosiewicz G., Karolewski P., Oleksyn J. 2012. Zawartość węgla w biomasie pospolitych gatunków krzewów podszycia leśnego. Sylwan 156 (9): 650−662.
  • Kainulainen P., Ruohomäki K., Ossipov V., Haukioja E., Pihlaja K. 1998. Delayed induced changes in the biochemical composition of host plant leaves during an insect outbreak. Oecologia 116: 182−190.
  • Kaplan I., Halitschke R., Kessler A., Sardanelli S., Denno R. F. 2008. Constitutive and induced defenses to herbivory in above− and belowground plant tissues. Ecology 89 (2): 392−406.
  • Karban R. 2011. The ecology and evolution of induced resistance against herbivores. Functional Ecology 25: 339−347.
  • Karban R., Myers J. H. 1989. Induced plant responses to herbivory. Annual Review of Ecology and Systematics 20: 331−348.
  • Karolewski P., Giertych M. J. 1995. Changes in the level of phenols during needle development in Scots pine populations in a control and polluted environment. European Journal of Forest Pathology 25 (6−7): 297−306.
  • Karolewski P., Giertych M. J., Żmuda M., Jagodziński A. M., Oleksyn J. 2013. Season and light affect constitutive defenses of understory shrub species against folivorous insects. Acta Oecologica 53: 19−32.
  • Karolewski P., Jagodziński A. M., Grzebyta J. 2011. Wpływ wieku drzew oraz wieku i lokalizacji igieł w koronie na zawartość związków fenolowych w igłach młodych sosen. Sylwan 155 (12): 797−807.
  • Karolewski P., Zadworny M., Mucha J., Napierała−Filipiak A., Oleksyn J. 2010. Link between defoliation and root vitality in five understory shrubs with different resistance to insect herbivores. Tree Physiology 30: 969−978.
  • Kączkowski J. 1985. Związki terpenowe i ich pochodne. W: Biochemia roślin. t. II. Metabolizm wtórny. PWN, Warszawa. 97−167.
  • Keeling C. I., Bohlmann J. 2006. Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytologist 170: 657−675.
  • Koricheva J., Nykänen H., Gianoli E. 2004. Meta−analysis of trade−offs among plant antiherbivore defenses: are plants jacks−of−all−trade, masters of all? The American Naturalist 163 (4): E64−E75.
  • Kozłowska M. 1994. Phenolic composition of red raspberry canes in relation to Didymella applanata (Niessl) Sacc. response. Acta Physiologiae Plantarum 16 (3): 211−215.
  • Kraus T. E. C., Zasoski R. J., Dahlgren R. A. 2003. Fertility and pH effects on polyphenol and condensed tannin concentrations in foliage and roots. Plant and Soil 262 (1/2): 95−109.
  • Leather S. R., Lehti J. P. 1982. Abundance and distribution of Yponomeuta evonymellus (Lepidoptera, Yponomeutidae) in Finland during 1981. Notulae Entomologicae 62 (3): 93−96.
  • Lokvam J., Kursar T. A. 2005. Divergence in structure and activity of phenolic defences in young leaves of two co−occurring Inga species. Journal of Chemical Ecology 31 (11): 2563−2580.
  • Manninen A.−M., Vuorinen M., Holopainen J. K. 1998. Variation in growth, chemical defense, and herbivore resistance in Scots pine provenances. Journal of Chemical Ecology 24 (8): 1315−1331.
  • McArthur C., Loney P. E., Davies N. W., Jordan G. J. 2009. Early ontogenetic trajectories vary among defence chemicals in seedlings of a fast−growing eucalypt. Austral Ecology 35 (2): 157−166.
  • Metlen K. L., Aschehoug E. T., Callaway R. M. 2009. Plant behavioural ecology: dynamic plasticity in secondary metabolites. Plant, Cell and Environment 32: 641−653.
  • Niemann G. J. 1976. Phenolics from Larix needles. XII. Seasonal variation of main flavonoids in leaves of L. leptolepis. Acta Botanica Neerlandica 25 (5): 349−359.
  • Oleksyn J., Karolewski P., Giertych M. J., Żytkowiak R., Reich P. B., Tjoelker M. G. 1998. Primary and secondary host plants differ in photosynthetic response to herbivory: evidence from Alnus and Betula grazed by the alder beetle, Agelastica alni. New Phytologist 140 (2): 239−249.
  • Oleszek W., Stochmal A., Karolewski P., Simonet A. M., Macias F. A., Tava A. 2002. Flavonoids from Pinus sylvestris needles and their variation in trees of different origin grown for nearly a century at the same area. Biochemical Systematics and Ecology 30 (10): 1011−1022.
  • Ossipov V., Loponen J., Ossipova S., Haukioja E., Pihlaja K. 1997. Gallotannins of birch Betula pubescens leaves: HPLC separation and quantification. Biochemical Systematics and Ecology 25: 493−504.
  • Pleszczyńska M., Szczodrak J. 2005. Taniny i ich rozkład enzymatyczny. Biotechnologia 68 (1): 152−165.
  • Poorter L., van de Plassche M., Willems S., Boot R. G. A. 2004. Leaf traits and herbivory rates of tropical tree species differing in successional status. Plant Biology 6: 746−754.
  • Przybył K., Karolewski P., Oleksyn J., Łabędzki A., Reich P. B. 2008. Fungal diversity of Norway spruce litter: effects of site conditions and premature leaf fall caused by bark beetle outbreak. Microbial Ecology 56: 332−340.
  • Rasmann S., Bauerle T. L., Poveda K., Vannette R. 2011. Predicting root defence against herbivores during succession. Functional Ecology 25: 368−379.
  • Rengel Z., Graham R. D., Fedler J. F. 1994. Time−course of biosynthesis of phenolics and lignin in roots of wheat genotypes differing in manganese efficiency and resistance to take−all fungus. Annals of Botany 74: 471−477.
  • Riipi M., Ossipov V., Lempa K., Haukioja E., Koricheva J., Ossipova S., Pihlaja K. 2002. Seasonal changes in birch leaf chemistry; are there trade−offs between leaf growth and accumulation of phenolics? Oecologia 130: 380−390.
  • Roberts M. R., Paul N. D. 2006. Seduced by the dark side: integrating molecular and ecological perspectives on the influence of light on plant defence against pests and pathogens. New Phytologist 170: 677−699.
  • Sallas L., Luomala E.−M., Utriainen J., Kainulainen P., Holopainen J. K. 2003. Contrasting effects of elevated carbon dioxide concentration and temperature on Rubisco activity, chlorophyl fluorescence, needle ultrastructure and secondary metabolites in conifer seedlings. Tree Physiology 23: 97−108.
  • Salminen J−P., Karonen M. 2011. Chemical ecology of tannins and other phenolics: we need a change in approach. Functional Ecology 25: 325−338.
  • Scalbert A. 1991. Antimicrobial properties of tannins. Phytochemistry 30: 3875−3883.
  • Stevens M. T., Lindroth R. L. 2005. Induced resistance in the interminate growth of aspen (Populus tremuloides). Oecologia 145: 298−306.
  • Stolter C., Ball J. P., Niemelä P., Julkunen−Tiitto R. 2010. Herbivores and variation in the composition of specific phenolics of boreal coniferous trees: a search for patterns. Chemoecology 20: 229−242.
  • Strack D., Heilemann J., Wray V., Dirks H. 1989. Structures and accumulation patterns of soluble and insoluble phenolics from Norway spruce needles. Phytochemistry 28 (8): 2071−2078.
  • Zulak K. G., Bohlmann J. 2010. Terpenoid biosynthesis and specialized vascular cells of conifer defense. Journal of Integrative Plant Biology 52 (1): 86−97.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7c850e08-ebc3-46c4-92c8-8f2864fe4014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.