PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 68 | 1 |

Tytuł artykułu

Mycosynthesis of size-controlled silver nanoparticles through optimization of process variables by response surface methodology

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The present study was carried out to reduce the size of silver nanoparticles (AgNPs) by optimizing physico-chemical conditions of the Aspergillus fumigatus BTCB10 growth based on central composite design (CCD) through response surface methodology (RSM). Vari-ables such as a concentration of silver nitrate (mM), NaCl (%) and the wet weight of biomass (g) were controlled to produce spherical, monodispersed particles of 33.23 nm size, observing 78.7% reduction in size as compared to the initially obtained size that was equal to 356 nm. The obtained AgNPs exhibited negative zeta potential of –9.91 mV with a peak at 420 nm in the UV-Vis range whereas Fourier Transform Infrared (FT-IR) analysis identified O–H, C = C, C≡ C, C–Br and C–Cl groups attached as capping agents. After conducting RSM experiments, a high nitrate reductase activity value of 179.15 nmol/h/ml was obtained; thus indicating a likely correlation between enzyme production and AgNPs synthesis. The F-value (significant at 3.91), non-significant lack of fit and determination coefficient (R² = 0.7786) is representative of the good relation between the predicted values of response. We conclude that CCD is an effective tool in obtaining significant results of high quality and efficiency.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

68

Numer

1

Opis fizyczny

p.35-42,fig.,ref.

Twórcy

autor
  • Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
autor
  • Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
autor
  • School of Pharmacy, University of the Punjab, Lahore, Pakistan
autor
  • School of Science and Engineering, Department of Chemistry, Lahore University of Management Sciences, Lahore, Pakistan
autor
  • Division of Science and Technology, Department of Zoology, University of Education, Lahore, Pakistan
autor
  • Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
autor
  • Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan

Bibliografia

  • Asghar A, Abdul Raman AA, Daud WMAW. A comparison of central composite design and Taguchi method for optimizing Fen-ton process. Sci World J. 2014;2014:1–14. doi:10.1155/2014/869120 Medline
  • Banerjee K, Ravishankar Rai V. A review on mycosynthesis, mechanism, and characterization of silver and gold nanoparticles. Bionanoscience. 2018;8(1):17–31. doi:10.1007/s12668-017-0437-8
  • Bordley JA, El-Sayed MA. Enhanced electrocatalytic activity toward the oxygen reduction reaction through alloy formation: Platinum-silver alloy nanocages. J Phys Chem C. 2016;120(27):14643–14651. doi:10.1021/acs.jpcc.6b03032
  • Das RK, Pachapur VL, Lonappan L, Naghdi M, Pulicharla R, Maiti S, Cledon M, Dalila LMA, Sarma SJ, Brar SK. Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects. Nanotechnol Environ Eng. 2017;2(1):18. doi:10.1007/s41204-017-0029-4
  • Devi TP, Kulanthaivel S, Kamil D, Borah JL, Prabhakaran N, Srinivasa N. Biosynthesis of silver nanoparticles from Trichodermaspecies. Indian J Exp Biol. 2013;51(7):543–547. MedlineDil EA, Ghaedi M, Ghaedi A, Asfaram A, Jamshidi M, Pur-kait MK. Application of artificial neural network and response surface methodology for the removal of crystal violet by zinc oxide nanorods loaded on activate carbon: kinetics and equilibrium study. J Taiwan Inst Chem Eng. 2016;59(59):210–220. doi:10.1016/j.jtice.2015.07.023
  • Ghanbari S, Vaghari H, Sayyar Z, Adibpour M, Jafarizadeh-Malmiri H. Autoclave-assisted green synthesis of silver nano-particles using A. fumigatus mycelia extract and the evaluation of their physico-chemical properties and antibacterial activity. Green Processing and Synthesis. 2018;7(3):217–224. doi:10.1515/gps-2017-0062
  • Gudikandula K, Vadapally P, Singara Charya MA. Biogenic syn-thesis of silver nanoparticles from white rot fungi: their charac-terization and antibacterial studies. OpenNano. 2017;2(1):64–78. doi:10.1016/j.onano.2017.07.002
  • Hamedi S, Ghaseminezhad M, Shokrollahzadeh S, Shojaosa-dati SA. Controlled biosynthesis of silver nanoparticles using nitrate reductase enzyme induction of filamentous fungus and their antibacterial evaluation. Artif Cells Nanomed Biotechnol. 2017;45(8):1588–1596. doi:10.1080/21691401.2016.1267011 Medline
  • Hamedi S, Shojaosadati SA, Shokrollahzadeh S, Hashemi-Najaf Abadi S. Controlled biosynthesis of silver nanoparticles using cul-ture supernatant of filamentous fungus. Iran J Chem Chem Eng. 2017;36(5):33–42.
  • Harrigan W. Laboratory methods in food microbiology. San Diego (USA): Academic Press. 1998;100 p.
  • Jogee PS, Ingle AP, Rai M. Isolation and identification of toxi-genic fungi from infected peanuts and efficacy of silver nanopar-ticles against them. Food Control. 2017;71:143–151. doi:10.1016/j.foodcont.2016.06.036
  • Khan AU, Malik N, Khan M, Cho MH, Khan MM. Fungi-assisted silver nanoparticle synthesis and their applications. Biopro-cess Biosyst Eng. 2018;41(1):1–20. doi:10.1007/s00449-017-1846-3 Medline
  • Li WR, Xie XB, Shi QS, Zeng HY, OU-Yang YS, Chen YB. Anti-bacterial activity and mechanism of silver nanoparticles on Esch-erichia coli. Appl Microbiol Biotechnol. 2010;85(4):1115–1122. doi:10.1007/s00253-009-2159-5 Medline
  • Majeed S, Abdullah MS, Dash GK, Ansari MT, Nanda A. Bio-chemical synthesis of silver nanoprticles using filamentous fungi Penicillium decumbens (MTCC-2494) and its efficacy against A-549 lung cancer cell line. Chin J Nat Med. 2016;14(8):615–620. doi:10.1016/S1875-5364(16)30072-3 Medline
  • Mitra C, Ghoshroy S, Lead J, Chanda A. Decreased aflatoxin bio-synthesis upon uptake of 20 nm-sized citrate coated silver nanopar-ticles by the aflatoxin producer Aspergillus parasiticus. Microsc Microanal. 2016;22 S3:1182–1183. doi:10.1017/S1431927616006759
  • Mitrano DM, Lombi E, Dasilva YAR, Nowack B. Unraveling the complexity in the aging of nanoenhanced textiles: A comprehen-sive sequential study on the effects of sunlight and washing on silver nanoparticles. Environ Sci Technol. 2016;50(11):5790–5799. doi:10.1021/acs.est.6b01478 Medline
  • Mohamed YM, Azzam AM, Amin BH, Safwat NA. Mycosynthesis of iron nanoparticles by Alternaria alternata and its antibacterial activity. Afr J Biotechnol. 2015;14(14):1234–1241. doi:10.5897/AJB2014.14286
  • Othman AM, Elsayed MA, Elshafei AM, Hassan MM. Application of response surface methodology to optimize the extracellular fun-gal mediated nanosilver green synthesis. JGEB. 2017;15(2):497–504.
  • Pugazhendhi A, Prabakar D, Jacob JM, Karuppusamy I, Saratale RG. Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Microb Pathog. 2018;114(114):41–45. doi:10.1016/j.micpath.2017.11.013 Medline
  • Rathna GS, Elavarrsi A, Peninal S, Subramanian J, Mano G,Kalaiselvam M. Extracellular biosynthesis of silver nanoparticles by endophytic fungus Aspergillus terreus and its anti-dermatophytic activity. Int J Pharm Biol Arch. 2013;1(4):481–487.
  • Robertson JD, Rizzello L, Avila-Olias M, Gaitzsch J, Contini C, Magoń MS, Renshaw SA, Battaglia G. Purification of nanoparticles by size and shape. Sci Rep. 2016;6(1):27494. doi:10.1038/srep27494 Medline
  • Sadowski Z, Maliszewska IH, Grochowalska B, Polowczyk I, Kozlecki T. Synthesis of silver nanoparticles using microorganisms. Mater Sci Pol. 2008;26(2):419–424.
  • Saravanan M, Arokiyaraj S, Lakshmi T, Pugazhendhi A. Syn-the sis of silver nanoparticles from Phenerochaete chrysosporium(MTCC-787) and their antibacterial activity against human patho-genic bacteria. Microb Pathog. 2018a;117(117):68–72. doi:10.1016/j.micpath.2018.02.008 Medline
  • Saravanan M, Barik SK, MubarakAli D, Prakash P, Puga-zhendhi A. Synthesis of silver nanoparticles from Bacillus brevis(NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microb Pathog. 2018b;116(116):221–226. doi:10.1016/j.micpath.2018.01.038 Medline
  • Shahzad A, Iqtedar M.Aspergillus fumigatus isolate BTCC10 small subunit ribosomal RNA gene (KY486782) [Internet]. NCBI. 2017; [cited 2018 September 16]. Available from: https://www.ncbi.nlm.nih.gov/nuccore/KY486782
  • Shankar PD, Shobana S, Karuppusamy I, Pugazhendhi A, Ramkumar VS, Arvindnarayan S, Kumar G. A review on the biosynthesis of metallic nanoparticles (gold and silver) using bio-components of microalgae: formation mechanism and applica-tions. Enzyme Microb Technol. 2016;95(95):28–44. doi:10.1016/j.enzmictec.2016.10.015 Medline
  • Shanmuganathan R, MubarakAli D, Prabakar D, Muthukumar H, Thajuddin N, Kumar SS, Pugazhendhi A. An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: green approach. Environ Sci Pollut Res Int. 2018;25(11):10362–10370. doi:10.1007/s11356-017-9367-9 Medline
  • Singh D, Rathod V, Ninganagouda S, Hiremath J, Singh AK, Mathew J. Optimization and characterization of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa(turmeric) and application studies against MDR E. coli and S. aureus.Bioinorg Chem Appl. 2014;2014:1–8. doi:10.1155/2014/408021 Medline
  • Vijayan SR, Santhiyagu P, Ramasamy R, Arivalagan P, Kumar G, Ethiraj K, Ramaswamy BR. Seaweeds: A resource for marine bionanotechnology. Enzyme Microb Technol. 2016;95(95):45–57. doi:10.1016/j.enzmictec.2016.06.009 Medline
  • Zhao X, Zhou L, Riaz Rajoka MS, Yan L, Jiang C, Shao D, Zhu J, Shi J, Huang Q, Yang H, et al. Fungal silver nanoparticles: synthesis, application and challenges. Crit Rev Biotechnol. 2018;38(6):817–835. doi:10.1080/07388551.2017.1414141 Medline
  • Zomorodian K, Pourshahid S, Sadatsharifi A, Mehryar P,Pakshir K, Rahimi MJ, Arabi Monfared A. Biosynthesis and char-acterization of silver nanoparticles by Aspergillus species. BioMed Res Int. 2016;2016:1–6. doi:10.1155/2016/5435397 Medline

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7b9c9eca-24d0-44a0-9eb0-e9ae635ca8d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.