PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 64 | 3 |

Tytuł artykułu

CRISPR-Cas systems in prokaryotes

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Prokaryotic organisms possess numerous strategies that enable survival in hostile conditions. Among others, these conditions include the invasion of foreign nucleic acids such as bacteriophages and plasmids. The clustered regularly interspaced palindromic repeats-CRISPR-associated proteins (CRISPR-Cas) system provides the majority of bacteria and archaea with adaptive and hereditary immunity against this threat. This mechanism of immunity is based on short fragments of foreign DNA incorporated within the hosts genome. After transcription, these fragments guide protein complexes that target foreign nucleic acids and promote their degradation. The aim of this review is to summarize the current status of CRISPR-Cas research, including the mechanisms of action, the classification of different types and subtypes of these systems, and the development of new CRISPR-Cas-based molecular biology tools.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

64

Numer

3

Opis fizyczny

p.193-202,fig.,ref.

Twórcy

autor
  • Microbiology Department, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
autor
  • Microbiology Department, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
  • Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland

Bibliografia

  • Arslan Z., R.Wurm, O. Brener, P. Ellinger, L. Nagel-Steger, F. Oesterhelt, l. Schmitt, D. Willbold, R. Wagner, H. Gohlke H. and others. 2013. Double-strand DNA end-binding and sliding of the toroidal CRISPR-associated protein Csn2. Nucleic Acids Res. 41: 6347–6359.
  • Babu M., N. Beloglazova, R. Flick, C. Graham, T. Skarina, B. Nocek, A. Gagarinova, O. Pogoutse, G. Brown, A. Binkowski and others. 2011. A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair. Mol. Microbiol. 79: 484–502.
  • Barrangou R., C. Fremaux, H. Deveau, M. Richards, P. Boyaval, S. Moineau, D.A. Romero and P. Horvath. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315: 1709–1712.
  • Barrangou R., A.C. Coûté-Monvoisin, B. Stahl, I. Chavichvily, F. Damange, D.A. Romero, P. Boyaval, C. Fremaux and P. Horvath. 2013. Genomic impact of CRISPR immunization against bacteriophages. Biochem. Soc. Trans. 41: 1383–1391.
  • Beloglazova N., G. Brown, M.D. Zimmerman, M. Proudfoot, K.S. Makarova, M. Kudritska, S. Kochinyan, S. Wang, M. Chruszcz, W. Minor and others. 2008. A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats. J. Biol. Chem. 283: 20361–20371.
  • Beloglazova N., P. Petit, R. Flick, G. Brown, A. Savchenko and A.F. Yakunin. 2011. Structure and activity of the Cas3 HD nuclease MJ0384, an effector enzyme of the CRISPR interference. EMBO J. 30: 4616–4627.
  • Bibikova M., K. Beumer, J.K. Trautman and D. Carroll. 2003. Enhancing gene targeting with designed zinc finger nucleases. Science 300: 764.
  • Bikard D., W. Jiang, P. Samai, A. Hochschild, F. Zhang and L.A. Marraffini. 2013. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 41: 7429–7437.
  • Boch J., H. Scholze, S. Schornack, A. Landgraf, S. Hahn, S. Kay, T. Lahaye, A. Nickstadt and U. Bonas. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326: 1509–1512.
  • Bolotin A., B. Quinquis, A. Sorokin and S.D. Ehrlich. 2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151: 2551–2561.
  • Bondy-Denomy J., A. Pawluk, K.L. Maxwell and A.R. Davidson. 2013. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493: 429–432.
  • Carte J., R. Wang, H.Li, R.M. Terns and M.P. Terns M.P. 2008. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev. 22: 3489–3496.
  • Carte J., N.T. Pfister, M.M. Compton, R.M. Terns and M.P. Terns. 2010. Binding and cleavage of CRISPR RNA by Cas6. RNA 16: 2181–2188.
  • Chen B., L.A. Gilbert, B.A. Cimini, J. Schnitzbauer, W. Zhang, G.W. Li, J. Park, E.H. Blackburn, J.S. Weissman, L.S. Qi and others. 2013. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155: 1479–1491.
  • Cong L., F.A. Ran, D. Cox, S. Lin, R. Barretto, N. Habib, P.D. Hsu, X. Wu, W. Jiang, L.A. Marraffini and others. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819–823.
  • Datsenko K.A., K. Pougach, A. Tikhonov, B.L. Wanner, K. Severinov and E. Semenova. 2012. Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat. Commun. 3: 945.
  • Deltcheva E., K. Chylinski, C.M. Sharma, K. Gonzales, Y. Chao, Z.A. Pirzada , M.R. Eckert, J. Vogel and E. Charpentier. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471: 602–607.
  • Deng L., R.A. Garrett, S.A. Shah, X. Peng and Q. She. 2013. A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus. Mol. Microbiol. 87: 1088–1099.
  • Deveau H., R. Barrangou, J.E. Garneau, J. Labonté, C. Fremaux, P. Boyaval, D.A. Romero, P. Horvath and S. Moineau. 2008. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 190: 1390–1400.
  • Díez-Villaseñor C., N.M. Guzmán, C. Almendros, J. García-Martínez and F.J. Mojica F.J. 2013. CRISPR-spacer integration reporter plasmids reveal distinct genuine acquisition specificities among CRISPR-Cas I-E variants of Escherichia coli. RNA Biol. 10: 792–802.
  • Dupuis M., M. Villion, A.H. Magadán and S. Moineau. 2013. CRISPR-Cas and restriction-modification systems are compatible and increase phage resistance. Nat. Commun. 4: 2087.
  • Fineran P.C., M.J. Gerritzen, M. Suárez-Diez, T. Künne, J. Boekhorst, S.A. van Hijum, R.H. Staals and S.J. Brouns. 2014. Degener ate target sites mediate rapid primed CRISPR adaptation. Proc. Natl. Acad. Sci. USA 111: E1629–1638.
  • Garside E.L., M.J. Schellenberg, E.M. Gesner, J.B. Bonanno, J.M. Sauder, S.K. Burley, S.C. Almo, G. Mehta and A.M. MacMillan. 2012. Cas5d processes pre-crRNA and is a member of a larger family of CRISPR RNA endonucleases. RNA 18: 2020–2028.
  • Gasiunas G., R. Barrangou, P. Horvath and V. Siksnys. 2012. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. USA 109: E2579–2586.
  • Gasiunas G., T. Sinkunas and V. Siksnys. 2014. Molecular mechanisms of CRISPR-mediated microbial immunity. Cell Mol. Life Sci. 71: 449–465.
  • Godde J.S. and A. Bickerton. 2006. The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes. J. Mol. Evol. 62: 718–729.
  • Goren M., I. Yosef, R. Edgar and U. Qimron. 2012. The bacterial CRISPR/Cas system as analog of the mammalian adaptive immune system. RNA Biol. 9: 549–554.
  • Groenen P.M., A.E. Bunschoten, D. van Soolingen and J.D. van Embden. 1993. Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method. Mol. Microbiol. 10: 1057–1065.
  • Gunderson F.F. and N.P. Cianciotto. 2013. The CRISPR-associated gene cas2 of Legionella pneumophila is required for intracellular infection of amoebae. MBio. 4: e00074–00013.
  • Haft D.H., J. Selengut, E.F. Mongodin and K.E. Nelson. 2005. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol 1: e60.
  • Hale C.R., P. Zhao, S. Olson, M.O. Duff, B.R. Graveley, L. Wells, R.M. Terns and M.P. Terns. 2009. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139: 945–956.
  • Hale C.R., S. Majumdar, J. Elmore, N. Pfister, M. Compton, S. Olson, A.M. Resch, C.V. Glover, B.R. Graveley, R.M. Terns and others. 2012. Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs. Mol. Cell 45: 292–302.
  • Hatoum-Aslan A., I. Maniv and L.A. Marraffini. 2011. Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site. Proc. Natl. Acad. Sci. USA 108: 21218–21222.
  • Hatoum–Aslan A., I. Maniv, P. Samai and L.A. Marraffini. 2014. Genetic characterization of antiplasmid immunity through a type III–A CRISPR–Cas system. J. Bacteriol. 196: 310–317.
  • Held N.L., A. Herrera and R.J. Whitaker. 2013. Reassortment of CRISPR repeat-spacer loci in Sulfolobus islandicus. Environ. Microbiol. 15: 3065–3076.
  • Heler R., L.A. Marraffini and D. Bikard. 2014. Adapting to new threats: the generation of memory by CRISPR-Cas immune systems. Mol. Microbiol. 93: 1–9.
  • Horvath P., A.C. Coûté-Monvoisin, D.A. Romero, P. Boyaval, C. Fremaux and R. Barrangou. 2009. Comparative analysis of CRISPR loci in lactic acid bacteria genomes. Int. J. Food Microbiol. 131: 62–70.
  • Hrle A., L.K. Maier, K. Sharma, J. Ebert, C. Basquin, H. Urlaub, A. Marchfelder and E. Conti. 2014. Structural analyses of the CRISPR protein Csc2 reveal the RNA-binding interface of the type I-D Cas7 family. RNA Biol. 11(8): 1072–1082.
  • Ishino Y., H. Shinagawa, K. Makino, M. Amemura and A. Nakata. 1987. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169: 5429–5433.
  • Jackson R.N., M. Lavin, J. Carter and B. Wiedenheft. 2014. Fitting CRISPR-associated Cas3 into the helicase family tree. Curr. Opin. Struct. Biol. 24: 106–114.
  • Jansen R., J.D. Embden, W. Gaastra and L.M. Schouls. 2002. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43: 1565–1575.
  • Jiang W., D.Bikard, D. Cox, F. Zhang and L.A. Marraffini. 2013. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31: 233–239.
  • Jinek M., K. Chylinski, I. Fonfara, M. Hauer, J.A. Doudna and E. Charpentier. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816–821.
  • Jinek M., A. East, A. Cheng, S. Lin, E. Ma and J. Doudna. 2013. RNA-programmed genome editing in human cells. Elife 2: e00471.
  • Jinek M., F. Jiang, D.W. Taylor, S.H. Sternberg, E. Kaya, E. Ma, C. Anders , M. Hauer, K. Zhou, S. Lin and others. 2014. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343: 1247997.
  • Jore M.M., M. Lundgren, E. van Duijn, J.B. Bultema, E.R. Westra, S.P. Waghmare, B. Wiedenheft, U. Pul, R. Wurm, R. Wagner and others. 2011. Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat. Struct. Mol. Biol. 18: 529–536.
  • Kamerbeek J., L. Schouls, A. Kolk, M. van Agterveld, D. van Soolingen, S. Kuijper , A. Bunschoten, H. Molhuizen, R. Shaw, M. Goyal and others. 1997. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J. Clin. Microbiol. 35: 907–914.
  • Koonin E.V. and Y.I. Wolf. 2009. Is evolution Darwinian or/and Lamarckian? Biol. Direct. 4: 42.
  • Kunin V., R.Sorek and P. Hugenholtz. 2007. Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol. 8: R61.
  • Künne T., D.C. Swarts and S.J. Brouns. 2014. Planting the seed: target recognition of short guide RNAs. Trends Microbiol. 22: 74–83.
  • Li M., R. Wang, D. Zhao and H. Xiang. 2014. Adaptation of the Haloarcula hispanica CRISPR-Cas system to a purified virus strictly requires a priming process. Nucleic Acids Res. 42: 2483–2492.
  • Louwen R., D. Horst-Kreft, A.G. de Boer, L. van der Graaf, G. de Knegt, M. Hamersma, A.P. Heikema, A.R. Timms, B.C.Jacobs, J.A. Wagenaar and others. 2013. A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain-Barré syndrome. Eur. J. Clin. Microbiol. Infect. Dis 32: 207–226.
  • Louwen R., R.H. Staals, H.P. Endtz, P. van Baarlen and J. van der Oost. 2014. The role of CRISPR-Cas systems in virulence of pathogenic bacteria. Microbiol. Mol. Biol. Rev. 78: 74–88.
  • Makarova K.S., L. Aravind, N.V. Grishin, I.B. Rogozin and E.V. Koonin. 2002. A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic. Acids. Res. 30: 482–496.
  • Makarova K.S.,N.V. Grishin, S.A. Shabalina, Y.I. Wolf and E.V. Koonin. 2006. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct. 1: 7.
  • Makarova K.S., D.H. Haft, R. Barrangou, S.J. Brouns, E. Charpentier, P. Horvath, S. Moineau, F.J. Mojica, Y.I. Wolf, A.F. Yakunin and others. 2011. Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol. 9: 467–477.
  • Mali P., K.M. Esvelt and G.M. Church. 2013a. Cas9 as a versatile tool for engineering biology. Nat. Methods 10: 957–963.
  • Mali P., L. Yang, K.M. Esvelt, J.Aach, M. Guell, J.E. DiCarlo, J.E. Norville and G.M. Church. 2013b. RNA-guided human genome engineering via Cas9. Science 339: 823–826.
  • Marraffini L.A. and E.J. Sontheimer. 2008. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322: 1843–1845.
  • Marraffini L.A. and E.J. Sontheimer. 2010. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463: 568–571.
  • Mojica F.J., C. Ferrer, G. Juez and F. Rodríguez-Valera. 1995. Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol. Microbiol. 17: 85–93.
  • Mojica F.J., C. Díez-Villaseñor, J. García-Martínez and E. Soria E. 2005. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60: 174–182.
  • Mojica F.J., C. Díez-Villaseñor, J. García-Martínez and C. Almendros. 2009. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155: 733–740.
  • Mulepati S. and S. Bailey. 2011. Structural and biochemical analysis of nuclease domain of clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 3 (Cas3). J. Biol. Chem. 286: 31896–31903.
  • Nam K.H., F. Ding, C. Haitjema, Q. Huang, M.P. DeLisa and A. Ke. 2012a. Double-stranded endonuclease activity in Bacillus halodurans clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas2 protein. J. Biol. Chem. 287: 35943–35952.
  • Nam K.H., C. Haitjema, X. Liu, F. Ding, H. Wang, M.P. DeLisa and A. Ke. 2012b. Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype I-C/Dvulg CRISPR-Cas system. Structure 20: 1574–1584.
  • Niewoehner O., M. Jinek and J.A. Doudna. 2014. Evolution of CRISPR RNA recognition and processing by Cas6 endonucleases. Nucleic Acids Res. 42: 1341–1353.
  • Nishimasu H., F.A. Ran, P.D. Hsu, S. Konermann, S.I. Shehata, N. Dohmae, R. Ishitani, F. Zhang and O. Nureki. 2014. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156: 935–949.
  • Opalka N., J. Brown, W.J. Lane, K.A. Twist, R. Landick, F.J. Asturias and S.A. Darst. 2010. Complete structural model of Escherichia coli RNA polymerase from a hybrid approach. PLoS Biol 8: e1000483
  • Perez-Rodriguez R., C. Haitjema, Q.Huang, K.H. Nam, S. Bernardis, A. Ke. and M.P. De Lisa. 2011. Envelope stress is a trigger of CRISPR RNA-mediated DNA silencing in Escherichia coli. Mol. Microbiol. 79: 584–599.
  • Pourcel C.,G. Salvignol and G. Vergnaud. 2005. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151: 653–663.
  • Reeks J., J. Naismith and M.F. White. 2013. CRISPR interference: a structural perspective. Biochem. J. 453: 155–166.
  • Rouillon C., M.Zhou, J. Zhang, A. Politis, V. Beilsten-Edmands, G. Cannone G., S. Graham, C.V. Robinson, L. Spagnolo and M.F. White. 2013. Structure of the CRISPR interference complex CSM reveals key similarities with cascade. Mol. Cell 52: 124–134.
  • Sampson T.R., S.D. Saroj, A.C. Llewellyn, Y.L. Tzeng and D.S. Weiss. 2013. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature 497: 254–257.
  • Samson J.E., A.H. Magadán, M. Sabri and S. Moineau. 2013. Revenge of the phages: defeating bacterial defences. Nat. Rev. Microbiol. 11: 675–687.
  • Sashital D.G., B. Wiedenheft and J.A. Doudna. 2012. Mechanism of foreign DNA selection in a bacterial adaptive immune system. Mol. Cell 46: 606–615.
  • Scholz I., S.J. Lange, S. Hein, W.R. Hess and R. Backofen. 2013. CRISPR-Cas systems in the cyanobacterium Synechocystis sp. PCC6803 exhibit distinct processing pathways involving at least two Cas6 and a Cmr2 protein. PLoS One 8: e56470.
  • Semenova E., M. Nagornykh, M. Pyatnitskiy, I.I. Artamonova and K. Severinov. 2009. Analysis of CRISPR system function in plant pathogen Xanthomonas oryzae. FEMS Microbiol Lett 296: 110–116.
  • Semenova E., M.M. Jore, K.A. Datsenko, A. Semenova, E.R. Westra, B. Wanner, J. van der Oost, S.J. Brouns and K. Severinov. 2011. Interference by clustered regularly interspaced short palindro mic repeat (CRISPR) RNA is governed by a seed sequence. Proc. Natl. Acad. Sci. USA 108: 10098–10103.
  • Shah S.A., N.R. Hansen and R.A. Garrett. 2009. Distribution of CRISPR spacer matches in viruses and plasmids of crenarchaeal acidothermophiles and implications for their inhibitory mechanism. Biochem. Soc. Trans. 37: 23–28.
  • Shariat N. and E.G. Dudley. 2014. CRISPRs: molecular signatures used for pathogen subtyping. Appl. Environ. Microbiol. 80: 430–439.
  • Sinkunas T., G. Gasiunas, S.P. Waghmare, M.J. Dickman, R. Barrangou, P. Horvath and V. Siksnys. 2013. In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus. EMBO J. 32: 385–394.
  • Sorek R., V. Kunin and P. Hugenholtz. 2008. CRISPR-a wide spread system that provides acquired resistance against phages in bacteria and archaea. Nat. Rev. Microbiol. 6: 181–186.
  • Sorek R., C.M. Lawrence and B. Wiedenheft. 2013. CRISPR-mediated adaptive immune systems in bacteria and archaea. Ann. Rev. Biochem. 82: 237–266.
  • Soutourina O.A., M. Monot, P. Boudry, L. Saujet, C. Pichon, O. Sismeiro, E. Semenova, K. Severinov, C. Le Bouguenec, J.Y. Coppée and others. 2013. Genome-wide identification of regulatory RNAs in the human pathogen Clostridium difficile. PLoS Genet 9: e1003493.
  • Spilman M., A. Cocozaki, C. Hale, Y. Shao, N. Ramia, R. Terns, M. Terns, H. Li and S. Stagg. 2013. Structure of an RNA silencing complex of the CRISPR-Cas immune system.
  • Staals R.H., Y. Agari, S. Maki-Yonekura, Y. Zhu, D.W. Taylor, E. van Duijn, A. Barendregt, M. Vlot, J.J. Koehorst, K. Sakamoto and others. 2013. Structure and activity of the RNA-targeting Type III-B CRISPR-Cas complex of Thermus thermophilus. Mol. Cell 52: 135–145.
  • Stern A., L. Keren, O. Wurtzel, G. Amitai and R. Sorek. 2010. Self-targeting by CRISPR: gene regulation or autoimmunity? Trends Genet. 26: 335–340.
  • Sternberg S.H., R.E. Haurwitz and J.A. Doudna. 2012. Mechanism of substrate selection by a highly specific CRISPR endoribonuclease. RNA 18: 661–672.
  • Sternberg S.H., S. Redding, M. Jinek, E.C. Greene and J.A. Doudna. 2014. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507: 62–67.
  • Swarts D.C., C. Mosterd, M.W. van Passel and S.J. Brouns. 2012. CRISPR interference directs strand specific spacer acquisition. PLoS One 7: e35888.
  • van der Oost J., M.M. Jore, E.R. Westra, M. Lundgren and S.J. Brouns. 2009. CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem. Sci. 34: 401–407.
  • van der Ploeg J.R. 2009. Analysis of CRISPR in Streptococcus mutans suggests frequent occurrence of acquired immunity against infection by M102-like bacteriophages. Microbiology 155: 1966–1976.
  • van Duijn E., I.M. Barbu, A. Barendregt, M.M. Jore, B. Wiedenheft, M. Lundgren, E.R. Westra, S.J. Brouns, J.A. Doudna, J. van der Oost and others. 2012. Native tandem and ion mobility mass spectrometry highlight structural and modular similarities in clustered-regularly-interspaced shot-palindromic-repeats (CRISPR)associated protein complexes from.
  • Vercoe R.B., J.T. Chang, R.L. Dy, C. Taylor, T. Gristwood, J.S. Clulow, C. Richter, R. Przybilski, A.R. Pitman and P.C. Fineran. 2013. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLoS Genet 9: e1003454.
  • Viswanathan P., K. Murphy, B. Julien, A.G. Garza and L. Kroos. 2007. Regulation of dev, an operon that includes genes essential for Myxococcus xanthus development and CRISPR-associated genes and repeats. J. Bacteriol. 189: 3738–3750.
  • Wang R., G. Preamplume, M.P. Terns, R.M. Terns and H. Li. 2011. Interaction of the Cas6 riboendonuclease with CRISPR RNAs: recognition and cleavage. Structure 19: 257–264.
  • Westra E.R., U. Pul, N. Heidrich, M.M. Jore, M. Lundgren, T. Stratmann, R. Wurm, A. Raine, M. Mescher, L. Van Heereveld and others. 2010. H-NS-mediated repression of CRISPR-based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO. Mol. Microbiol. 77: 1380–1393.
  • Westra E.R., P.B. van Erp, T. Künne, S.P. Wong, R.H. Staals, C.L. Seegers, S. Bollen, M.M. Jore, E. Semenova, K. Severinov and others. 2012. CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol. Cell 46: 595–605.
  • Westra E.R., E. Semenova, K.A. Datsenko, R.N. Jackson, B. Wiedenheft, K. Severinov and S.J. Brouns. 2013. Type I-E CRISPR-cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition. PLoS Genet 9: e1003742.
  • Wiedenheft B., G.C. Lander, K. Zhou, M.M. Jore, S.J. Brouns, J.van der Oost, J.A. Doudna and E. Nogales. 2011. Structures of the RNA-guided surveillance complex from a bacterial immune system. Nature 477: 486–489.
  • Wiedenheft B.,K. Zhou, M. Jinek, S.M. Coyle, W. Ma and J.A. Doudna. 2009. Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense. Structure 17: 904–912.
  • Wiedenheft B., S.H. Sternberg and J.A. Doudna. 2012. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482: 331–338.
  • Yosef I., M.G. Goren and U. Qimron. 2012. Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res 40: 5569–5576.
  • Yosef I., D. Shitrit, M.G. Goren, D. Burstein, T. Pupko and U. Qimron. 2013. DNA motifs determining the efficiency of adaptation into the Escherichia coli CRISPR array. Proc. Natl. Acad. Sci. USA 110: 14396–14401.
  • Zhang J., T. Kasciukovic and M.F. White. 2012a. The CRISPR associated protein Cas4 Is a 5’ to 3’ DNA exonuclease with an iron-sulfur cluster. PLoS One 7: e47232.
  • Zhang J., C. Rouillon, M. Kerou, J. Reeks, K. Brugger, S. Graham, J. Reimann, G. Cannone, H. Liu, S.V. Albers and others. 2012b. Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity. Mol. Cell 45: 303–313.
  • Zhang Y., N. Heidrich, B.J. Ampattu, C.W. Gunderson, H.S. Seifert, C. Schoen, J. Vogel and E.J. Sontheimer. 2013. Processingindependent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol. Cell 50: 488–503.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7b918e02-fd8e-4fc9-ae15-f7bdc4fc6ddd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.