PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 15 | 3 |

Tytuł artykułu

Histochemistry and micromorphological diversity of glandular trichomes in Melissa officinalis L. leaf epidermis

Treść / Zawartość

Warianty tytułu

PL
Histochemia i mikromorfologiczne zróżnicowanie włosków gruczołowych w epidermie liści Melissa officinalis L.

Języki publikacji

EN

Abstrakty

EN
Due to the presence of glandular trichomes in their epidermis and production of essential oils, plants from the family Lamiaceae, including Melissa officinalis L., are commonly cultivated in most European countries and across Poland. With its diverse composition of essential oils and the wide range of pharmacological effects, the raw material of the lemon balm is widely applied in various branches of industry. In literature, there are no data presenting histochemical assays of glandular trichomes in the lemon balm; therefore, the aim of the study was to detect some substances with the use of selected stains and to characterise the micromorphology of the trichomes. The investigations were conducted using light, fluorescence, and scanning electron microscopes. The histochemical tests were based on Sudan Red 7b, Sudan black B, Nile blue, Nadi reagent, ferric chloride, potassium dichromate, magnesium acetate, Ruthenium red, and periodic acidSchiff reagent. Digitiform as well as morphologically diverse capitate and peltate glandular trichomes were distinguished in the leaf epidermis. The histochemical tests showed heterogeneity of the composition of the lemon balm essential oil. They were applied to determine lipids, fatty acids, neutral fats, terpene compounds, polyphenols, flavonoids, and polysaccharide compounds in the analysed glandular trichomes. Improvement of the histochemical methods for analysis of glandular trichomes will expand the knowledge of the metabolism of secretory cells and facilitate future modification of their secretion products.
PL
Rośliny z rodziny Lamiaceae, w tym (Melissa officinalis L.), ze względu na obecność w epidermie włosków gruczołowych i produkcję olejków eterycznych są powszechnie uprawiane w większości krajów Europy i na terenie całej Polski. Surowiec zielarski melisy o zróżnicowanym składzie chemicznym olejku i szerokim zakresie działania farmakologicznego znajduje szerokie zastosowanie w różnych dziedzinach przemysłu. W literaturze brak danych dotyczących histochemicznych testów włosków gruczołowych melisy lekarskiej, dlatego celem badań było określenie wybranych substancji przy użyciu wybranych barwników oraz określenie mikromorfologii włosków. Badania przeprowadzono przy użyciu mikroskopu świetlnego, fluorescencyjnego i skaningowego elektronowego. W testach histochemicznych zastosowano: Sudan czerwony 7B, Sudan czarny B, błękit Nilu, odczynnik Nadi, chlorek żelaza, dichromian potasu, octan magnezu, czerwień rutenową i odczynnik Schiffa. W epidermie liści wyróżniono włoski gruczołowe: palcowate i zróżnicowane morfologicznie głowiaste oraz tarczowate. Histochemiczne testy wykazały heterogenny charakter olejku melisowego. Przy ich użyciu wyznakowano w badanych włoskach gruczołowych lipidy, kwasy tłuszczowe, tłuszcze obojętne, związki terpenowe, polifenole, flawonoidy i związki polisacharydowe. Doskonalenie histochemicznych metod badań włosków gruczołowych umożliwi poznanie metabolizmu komórek wydzielniczych, a w przyszłości być może pozwoli na modyfikację produktów sekrecji włosków.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

15

Numer

3

Opis fizyczny

p.153-172,fig.,ref.

Twórcy

autor
  • Department of Botany, University of Life Sciences in Lublin, Akademicka 15, 20-934 Lublin, Poland
  • University of Life Sciences in Lublin, Lublin, Poland
autor
  • University of Life Sciences in Lublin, Lublin, Poland
autor
  • University of Life Sciences in Lublin, Lublin, Poland
  • Mendel University in Brno, Brno, Czech Republic

Bibliografia

  • Abdellatif, F., Hassani, A. (2015). Chemical composition of the essential oils from leaves of Melissa officinalis extracted by hydrodistillation, steam distillation, organic solvent and microwave hydrodistillation. J. Mater. Environ. Sci., 6, 1, 207–213.
  • Abdellatif, F., Boudjella, H., Zitouni, A., Hassani, A. (2014). Chemical composition and antimicrobial activity of the essential oil from leaves of algerian Melissa officinalis L. EXCLI J., 13, 772–781.
  • Agati, G., Tattini, M. (2010). Multiple functional roles of flavonoids in photoprotection. New Phytol., 186, 4, 786–793.
  • Allahverdiyev, A., Duran, N., Ozguven, M., Koltas, S. (2004). Antiviral activity of the volatile oils of Melissa officinalis L. against Herpes simplex virus type-2. Phytomedicine, 11, 7–8, 657–661.
  • Antal, T., Chong, C.H., Law, C.L., Sikolya, L. (2014). Effects of freeze drying on retention of essential oils, changes in glandular trichomes of lemon balm leaves. Int. Food. Res. J., 21, 1, 387–394.
  • Ascensão, L., Mota, L., Castro, M. (1999). Glandular trichomes on the leaves and flowers of Plectranthus ornatus: morphology, distribution and histochemistry. Ann. Bot., 84, 4, 437–447.
  • Astani, A., Navid, M.H., Schnitzler, P. (2014). Attachment and penetration of acyclovir-resistant herpes simplex virus are inhibited by Melissa officinalis extract. Phytother Res., 28, 10, 1547– 1552.
  • Bağdat, R.B., Coşge, B. (2006). The essential oil of lemon balm (Melissa officinalis L.), its components and using fields. J. Fac. Agric., OMU, 21, 1, 116–121.
  • Basar, S.N., Zaman, R. (2013). An overview of badranjboya (Melissa officinalis). Int. Res. J. Biol. Sci., 2, 12, 107–109.
  • Benavides, A., Napolitano, A., Bassarello, C., Carbone, V., Gazzerro, P., Malfitano, A.M., Saggese, P., Bifulco M., Piacente S., Pizza, C. (2009). Oxylipins from Dracontium loretense. J. Nat. Prod., 72, 5, 813–817.
  • Bohlmann, J., Keeling, C.I. (2008). Terpenoid biomaterials. Plant J., 54, 4, 656–669.
  • Bruce, T.J.A., Birkett, M.A., Blande, J., Hooper, A.M., Martin, J.L., Khambay, B., Prosser, I., Smart, L.E., Wadhams, L.J. (2005). Response of economically important aphids to components of Hemizygia petiolata essential oil. Pest Manag. Sci., 61, 11, 1115–1121.
  • Brundrett, M.C., Kendrick, B., Peterson, C.A. (1991). Efficient lipid staining in plant material with Sudan Red 7B or Fluoral Yellow 088 in polyethylene glycol-glycerol. Biotech. Histochem., 66, 3, 111–116.
  • Cain, A.J. (1947). The use of Nile blue in the examination of lipids. Quart. J. Microsc. Sci., 88, 29, 111–116.
  • Celep, F., Kahraman, A., Atalay, Z., Doğan, M. (2014). Morphology, anatomy, palynology, mericarp and trichome micromorphology of the rediscovered Turkish endemic Salvia quezelii (Lamiaceae) and their taxonomic implications. Plant Sys. Evol., 300, 9, 1945–1958.
  • Charrière-Ladreix, Y. (1976). Répartition intracellulaire du secrétat flavonique de Populus nigra L. Planta, 129, 2, 167–174.
  • Chizzola, R. (2013). Regular monoterpenes and sesquiterpenes (essential oils). [In:] Natural products, Ramawat, K.G., Mérillon, J.M. (eds). Springer: Berlin/Heidelberg, Germany: 2973– 3008.
  • Chwil, M. (2009). Flowering biology and nectary structure of Melissa officinalis L. Acta Agrobot., 62, 2, 23–30.
  • Corsi, G., Bottega, S. (1999). Glandular hairs of Salvia officinalis: New data on morphology, localization and histochemistry in relation to function. Ann. Bot., 84, 5, 657–664.
  • Dai, J., Mumper, R.J. (2010). Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules, 15, 10, 7313–7352.
  • David, R., Carde, J.P. (1964). Coloration différentielle des inclusions lipidique et terpéniques des pseudophylles du pin maritime au moyen du réactif Nadi. C. R. Acad. Sci. Paris, 258, 1338– 1340.
  • Dunkić, V., Bezić, N., Ljubešić, N., Bočina, I. (2007). Glandular hair ultrastructure and essential oils in Satureja subspicata Vis. ssp. subspicata and ssp. liburnica Šilić. Acta Biol. Cracov. Ser. Bot., 49, 2, 45–51.
  • Dzida, K., Zawiślak, G., Karczmarz, K. (2015). Yields and quality of three herbal species from Lamiaceae familly. J. Elem., 20, 2, 273–283.
  • Eiji, S., Salmaki, Y. (2016). Evolution of trichomes and its systematic significance in Salvia (Mentheae; Nepetoideae; Lamiaceae). Bot. J. Linn. Soc., 180, 2, 241–257.
  • Ferguson, L. (2001). Role of plant polyphenols in genomic stability. Fund. Mol. Mech. Mut., 475, 1–2, 89–111.
  • Ferrazzano, G.F., Amato, I., Ingenito, A., Zarrelli, A., Pinto, G., Pollio, A. (2011). Plant polyphenols and their anti-cariogenic properties: a review. Molecules, 16, 2, 1486–1507.
  • Gabe, M. (1968). Les Principes généraux de la technique histologique. [In:] Techniques histologiques, Babe, M. (ed.). Masson et Cie, Paris, 11–184.
  • Gersbach, P.V. (2002). The essential oil secretory structures of Prostanthera ovalifolia (Lamiaceae). Ann. Bot., 89, 3, 255–260.
  • Hallahan, D.L., Gray, J.C., Callow, J.A. (2000). Advances in botanical research incorporating advances in plant pathology. Plant trichomes, vol. 31. Academic Press, San Diego.
  • Heslop-Harrison, Y. Heslop-Harrison, J. (1981). The digestive glands of Pinguicula: structure and cytochemistry. Ann. Bot., 47, 3, 293–319.
  • Huang, S.S., Kirchoff, B.K., Liao, J.P. (2008). The capitate and peltate glandular trichomes of Lavandula pinnata L.(Lamiaceae): histochemistry, ultrastructure, and secretion 1. J. Torrey Bot. Soc., 135, 2, 155–167.
  • Ibragić, S., Salihović, M., Tahirović, I., Toromanović, J. (2014). Quantification of some phenolic acids in the leaves of Melissa officinalis L. from Turkey and Bosnia. Bull. Chem. Tech. Bosnia Herzegovina, 42, 47–50.
  • Jensen, W.A. (1962). Botanical histochemistry: principles and practice. Freeman, San Francisco. Jia, P., Gao, T., Xin, H. (2012). Changes in structure and histochemistry of glandular trichomes of Thymus quinquecostatus Celak. Sci. World J., 2012, 1–7.
  • Jia, P., Liu, H., Gao, T., Xin, H. (2013). Glandular trichomes and essential oil of Thymus quinquecostatus. Sci. World J., 2013, 1–8.
  • Johansen, D.A. (1940). Plant microtechnique. McGraw-Hill, New York. Kazemi, M., Esmaili, F. (2014). Volatile constituents of essential oils isolated from flowers and leaves of M. officinalis L. J. Biol. Environ. Sci., 8, 23, 111–113.
  • Kiliç, Ö. (2013). Chemotaxonomy of two Satureja L. (Lamiaceae) species from different localities of Turkey. J. Agr. Sci. Tech., B3, 751–756.
  • Kiran, S.R., Devi, P.S. (2007). Evaluation of mosquitocidal activity of essential oil and sesquiterpenes from leaves of Chloroxylon swietenia DC. Parasitol. Res., 101, 413–418.
  • Koksal, E., Bursal, E., Dikici, E., Tozoglu, F., Gulcin, I. (2011). Antioxidant activity of Melissa officinalis leaves. J. Med. Plants Res., 5, 2, 217–222.
  • Liu, M.Q., Liu, J.F. (2014). Structure and histochemistry of the glandular trichomes on the leaves of Isodon rubescens (Lamiaceae). Afr. J. Biotechnol., 11, 17, 4069–4078.
  • Lopez-Lazaro, M. (2009). Distribution and biological activities of the flavonoid luteolin. Rev. Med. Chem., 9, 1, 31–59.
  • Maggi, F., Papa, F., Cristalli, G., Sagratini, G., Vittori, S., Giuliani, C. (2010). Histochemical localization of secretion and composition of the essential oil in Melittis melissophyllum L. subsp. melissophyllum from Central Italy. Flav. Fragr. J., 25, 2, 63–70.
  • Marin, M., Ascensao, L., Lakušić, B. (2012). Trichomes of Satureja horvatii Šilić (Lamiaceae): Micromorphology and histochemistry. Arch. Biol. Sci, 64, 3, 995–1000.
  • Marin, M., Budimir, S., Janošević, D., Marin, P.D., Duletić-Laušević, S., Ljaljević-Grbić, M. (2008). Morphology, distribution, and histochemistry of trichomes of Thymus lykae Degen Jav. (Lamiaceae). Arch. Biol. Sci., 60, 4, 667–672.
  • Marin, M., Jasnić, N., Ascensão, L. (2013). Histochemical, micromorphology and ultrastructural investigation in glandular trichomes of Micromeria thymifolia. Bot. Serb., 37, 1, 49–53.
  • Marin, M., Jasnic, N., Lakusic, D., Duletic-Lausevic, S., Ascensão, L. (2010). The micromorphological histochemical and confocal analysis of Satureja subspicata Bartl. ex Vis. glandular trichomes. Arch. Biol. Sci., 62, 4,1143–1149.
  • Marin, M., Koko, V., Duletić-Laušević, S., Marin, P.D., Rančić, D., Dajic-Stevanovic, Z. (2006). Glandular trichomes on the leaves of Rosmarinus officinalis: Morphology, stereology and histochemistry. S. Afr. J. Bot., 72, 3, 378–382.
  • Mencherini, T., Picerno, P., Scesa, C., Aquino, R. (2007). Triterpene, antioxidant, and antimicrobial compounds from Melissa officinalis. J. Nat. Prod., 70, 12, 1889–1894.
  • Mimica-Dukic, N., Bozin, B., Sokovic, M., Simin, N. (2004). Antimicrobial and antioxidant activities of Melissa officinalis L. (Lamiaceae) essential oil. J. Agric. Food Chem., 52, 9, 2485–2489.
  • Mirzaei, M., Mirzaei, H., Sahebkar, A., Bagherian, A., Masoud Khoi, M.J., Mirzaei, H., Salehi, R., Reza Jaafari, M., Kazemi Oskuee, R. (2015). Phylogenetic analysis of selected mentholproducing species belonging to the Lamiaceae family. Nucleos. Nucleot. Nucl. Acids, 34, 9, 650–657.
  • Mithöfer, A., Schulze, B., Boland, W. (2004). Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Lett., 566, 1–3, 1–5.
  • Moradkhani, H., Sargsyan, E., Bibak, H., Naseri, B., Sadat-Hosseini, M., Fayazi-Barjin, A., Meftahizade, H. (2010). Melissa officinalis L., a valuable medicine plant: a rieview. J. Med. Plants Res., 4, 25, 2753–2759.
  • Moses, T., Pollier, J., Shen, Q., Soetaert, S., Reed, J., Erffelinck, M.L., Van Nieuwerburgh, F.C., Vanden Bossche, R., Osbourn, A., Thevelein, J.M., Deforce, D., Tang, K., Goossens, A. (2015). OSC2 and CYP716A14v2 catalyze the biosynthesis of triterpenoids for the cuticle of aerial organs of Artemisia annua. Plant Cell 27, 1, 286–301.
  • Mozuraitis, R., Stranden, M., Ramirez, M.I., Borg-Karlson, A.K., Mustaparta, H. (2002). Germacrene D increases attraction and oviposition by the tobacco budworm moth Heliothis virescens. Chem. Senses, 27, 6, 505–509.
  • Naidoo, Y., Kasim, N., Heneidak, S., Nicholas A., Naidoo, G. (2013). Foliar secretory trichomes of Ocimum obovatum (Lamiaceae): micromorphological structure and histochemistry. Plant Syst. Evol., 299, 873–885.
  • Nicholas, C., Batra, S., Vargo, M.A., Voss, O.H, Gavrilin, M.A, Wewers, M.D., Guttridge, D.C, Grotewold, E., Doseff, A.I. (2007). Apigenin blocks lipopolysaccharide-induced lethality in vivo and proinflammatory cytokines expression by inactivating NF-κB through the suppression of p65 phosphorylation. J. Immunol., 179, 10, 7121–7127.
  • Nowak, J.Z. (2010). Anti-inflammatory pro-resolving derivatives of omega-3 and omega-6 polyunsaturated fatty acids. Post. Hig. Med. Dośw., 64, 115–132.
  • Nurzyńska-Wierdak, R., Dzida, K. (2009). Influence of plant density and term of harvest on yield and chemical composition of sweet marjoram (Origanum majorana L.). Acta Sci. Pol. Hortorum Cultus, 8, 1, 51–61.
  • Nurzyńska-Wierdak, R., Bogucka-Kocka, A., Szymczak, G. (2014). Volatile constituents of Melissa officinalis leaves determined by plant age. Nat. Prod. Commun., 9, 5, 703–706.
  • Nurzyńska-Wierdak, R., Borowski, B., Dzida, K. (2011). Yield and chemical composition of basil herb depending on cultivar and foliar feeding with nitrogen. Acta Sci. Pol., Hortorum Cultus, 10, 1, 207–219.
  • Pădurariu, C., Gales, R., Preotu, A., Zamfirache, M., Toma, C., Boz, I. (2009). Distribution and morphology of hairs in Melissa officinalis L., vegetative organs. An. Şt. Univ. “Al. I. Cuza” Iaşi. Biol. Vegetală, 15, 2, 21–25.
  • Pandey, K.B., Rizvi, S.I. (2009). Plant polyphenols as dietary antioxidants in human healthand disease. Oxid. Med. Cell. Longev., 2, 5, 270–278.
  • Petenatti, M.E., Gette, M.A., Camí, G.E., Popovich, M.C., Marchevsky, E.J., Del Vitto, L.A., Petenatti, E.M. (2014). Quantitative micrograph, HPLC and FTIR profiles of Melissa officinalis and Nepeta cataria (Lamiaceae) from Argentina. Rev. Fac. Cienc. Agrar. Univ. Nac. Cuyo, 46, 2, 15–27.
  • Pinhoda-Silva, L., Mendes-Maia, P.V., Teófilo, T.M., Barbosa, R., Ceccatto, V. M., Coelho-deSouza, A.N., Cruz, J.S., Leal-Cardoso, J.H. (2012). Trans-caryophyllene, a natural sesquiter- pene, causes tracheal smooth muscle relaxation through blockade of voltage-dependent Ca2+ channels. Molecules, 17, 10, 11965–11977.
  • Rezakhanlo, A., Talebi, S.M. (2010). Trichomes morphology of Stachys lavandulifolia vahl.(Labiatae) of Iran. Procedia Soc. Behav. Sci., 2, 2, 3755–3763.
  • Rodrigues, L., Póvoa, O., Teixeira, G., Figueiredo, A.C., Moldão, M., Monteiro, A. (2013). Trichomes micromorphology and essential oil variation at different developmental stages of cultivated and wild growing Mentha pulegium L. populations from Portugal. Ind. Crops Prod., 43, 692–700.
  • Rusydi, A., Talip, N., Latip, J., Rahman, R.A., Sharif, I. (2013). Morphology of trichomes in Pogostemon cablin Benth. (Lamiaceae). Aust. J. Crop Sci., 7, 6, 744–749.
  • Saeb, K., Gholamrezaee, S. (2012). Variation of essential oil composition of Melissa officinalis L. leaves during different stages of plant growth. Asian Pac. J. Trop. Biomed., S547–S549.
  • Satil, F., Kaya, A., Dirmenci, T. (2011). The taxonomic value of leaf anatomy and trichome morphology of the genus Cyclotrichium (Lamiaceae) in Turkey. Nordic J. Bot., 29, 1, 38–48.
  • Seidler-Łożykowska, K., Mordalski, R., Kucharski, W., Kędzia, E., Nowosad, K., Bocianowski, J. (2015). Effect of organic cultivation on yield and quality of lemon balm herb (Melissa officinalis L.). Acta Sci. Pol. Hortorum Cultus, 14, 5, 55–67.
  • Serrato-Valenti, G., Bisio, A., Cornara, L., Ciarallo, G. (1997). Structural and histochemical investigation of the glandular trichomes of Salvia aurea L. leaves, and chemical analysis of the essential oil. Ann. Bot., 79, 3, 329–336.
  • Shekarchi, M., Hajimehdipoor, H., Saeidnia, S., Gohari, A.R., Hamedani, M.P. (2012). Comparative study of rosmarinic acid content in some plants of Labiatae family. Pharm. Mag., 8, 29, 37–41.
  • Taiwo, A.E., Leite, F.B., Lucena, G.M., Barros, M., Silveira, D., Silva, M.V., Ferreira, V.M. (2012). Anxiolytic and antidepressant-like effects of Melissa officinalis (lemon balm) extract in rats: influence of administration and gender. Indian J. Pharmacol., 44, 2, 189–192.
  • Tantry, M.A., Bhat, G.A., Idris, A., Dar, J.A., Yousef Al Omar, S., Masoodi, K.Z., Bashir, A., Ganai, B.A., Kamili, A.N., Shawl, A.S. (2014). Sulfated triterpenes from Lemon balm. Helv. Chim. Acta., 97, 11, 1497–1506.
  • Teixeira, G., Correia, A.I., Vasconcelos, T., Feijão, D., Madureira, A.M. (2013). Lavandula stoechas subsp. luisieri and L. pedunculata – phytochemical study, micromorphology and histochemistry. Rev. Ciênc. Agrár., 36, 2, 220–228.
  • Tissier, A. (2012). Trichome specific expression: promoters and their applications. [In:] Transgenic plants – Advances and limitations, Çiftçi, Y.O. (ed.). InTech, Rijeka, Croatia, 353–378.
  • Tsitsigiannis, D.I., Keller, N.P. (2007). Oxylipins as developmental and host-fungal communication signals. Trends Microbiol., 15, 3, 109–118.
  • Turner, G.W., Croteau, R. (2004). Organization of monoterpene biosynthesis in Mentha. Immunocytochemical localizations of geranyl diphosphate synthase, limonene-6-hydroxylase, isopiperitenol dehydrogenase, and pulegone reductase. Plant Physiol., 136, 4, 4215–4227.
  • Upchurch, R.G. (2008). Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotech. Lett., 30, 6, 967–977.
  • Vaughan, V.C., Hassing, M.R, Lewandowski, P.A. (2013). Marine polyunsaturated fatty acids and cancer therapy. Brit. J. Cancer, 108, 486–492.
  • Yeats, T.H., Rose, J.K. (2013). The formation and function of plant cuticles. Plant Physiol., 163, 1, 5–20.
  • Zhang, M., Swarts, S.G., Yin, L., Liu, C., Tian, Y., Cao, Y., Swarts, M., Yang, S., Zhang, S.B.,
  • Zhang, K., Ju, S., Olek, D.J., Schwartz, J.L., Keng, P.C., Howell, R., Zhang, L., Okunieff, P. (2011). Antioxidant properties of quercetin. Adv. Exp. Med. Biol., 701, 283–289.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7aaddc03-f241-4bfd-9a39-642ff276ee2a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.