PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 5 |

Tytuł artykułu

Production of agri-energy crop Miscanthus gigantheus on land degraded by power industry: SWOT analysis

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The hypothesis that land degraded by activities in the Kolubara Mining Basin may be restored by production of agri-energy crop Miscanthus gigantheus in ecologically and economically sustainable manner was investigated. The characteristics of the arable soil in the zone of influence of the thermal power plant Kolubara A, the overburden from the mine Kolubara and the ash from Kolubara A indicate limited fertility due to low contents of N and organic C, also contain heavy metals in concentrations between maximal allowable and remediation values (Ni, Cu, Zn), are slightly to moderately contaminated. Contents of heavy metals in aboveground biomass of miscanthus is low, making it suitable for use as biofuel. On the opposite side, in whole plants there are significant contents of Cr, Zn and Ni, mainly in underground organs, indicating phytostabilization potential. – Main strength: the use of marginal land for the production of bioenergetic crops. – Weaknesses: low yield. – Opportunity: use of large marginal land areas with a simultaneous reduced risk of heavy metal transfer to the environment, improving yields with the use of more intensive agri-technical measures. – Threats: the poorly developed biomass market as well as the lack of interest by land owners for its remediation.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

5

Opis fizyczny

p.3243-3251,ref.

Twórcy

autor
  • Faculty for Applied Ecology, University Singidunum, Futura, Belgrade, Republic of Serbia
autor
  • Faculty for Applied Ecology, University Singidunum, Futura, Belgrade, Republic of Serbia
autor
  • Faculty for Applied Ecology, University Singidunum, Futura, Belgrade, Republic of Serbia
autor
  • Faculty of Agriculture, Belgrade University, Belgrade, Republic of Serbia

Bibliografia

  • 1. REPUBLIC AGENCY FOR SPATIAL PLANNING OF THE REPUBLIC OF SERBIA. The Law on the Spatial Plan of the Republic of Serbia from 2010 to 2020. Official Gazette of the Republic of Serbia, 88, 2010.
  • 2. US ENVIRONMENTAL PROTECTION AGENCY. Introduction to Phytoremediation, Cincinnati, OH: National Risk Management Research Laboratory, Office of Research and Development, 2000.
  • 3. HAZANT A., KHAN E., SAJAD M.A. Phytoremediation of heavy metals – concept and applications. Chemosphere 91, 869, 2013.
  • 4. BARCELO J., POSCHENRIEDER C. Phytoremediation: principles and perspectives. Contributions to Science 2 (3), 333, 2003.
  • 5. CETINKAYA G., SOZEN N. Plant Species Potentially Useful in the Phyto stabilization Process for the Abandoned CMC Mining Site in Northern Cyprus. International Journal of Phytoremediation 13 (7), 681, 2011.
  • 6. RADZIEMSKA M., VAVERKOVÁ M.D., BARYŁA A. Phyto stabilization – Management Strategy for Stabilizing Trace Elements in Contaminated Soils. International Journal of Environmental Research and Public Health 14, 958, 2017.
  • 7. FERBER U., GRIMSKI D. Brownfields and redevelopment of urban areas, Austrian Federal Environment Agency, Austria, on behalf of CLARINET, 1, 2002.
  • 8. HOU D., AL-TABBAA A. Sustainability: A new imperative in contaminated land remediation. Environmental Science and Policy 39, 25, 2014.
  • 9. DICKINSON N.M., MACKAY J.M., GOODMAN A., PUTWAIN P. Planting trees on contaminated soils: Issues and guidelines. Land Contamination and Reclamation 41, 87, 2000.
  • 10. LICHT L.A., ISEBRANDS J.G. Linking phytoremediated pollutant removal to biomass economic opportunities. Biomass Bioenergy 28, 203, 2005.
  • 11. SKOUSEN J., KEENE T., MARRA M., GUTTA B. Reclamation of mined land with switchgrass, miscanthus, and Arundo for biofuel production. Journal American Society of Mining and Reclamation 2 (1) 177, 2013.
  • 12. GOMES H.I. Phytoremediation for bioenergy: challenges and opportunities. Environmental Technology Reviews 1 (1), 59, 2012.
  • 13. LIUA T.T., MCCONKEYA B.G., MAB Z.Y., LIUD Z.G., LIB X., CHENGB L.L. Strengths, Weaknesses, Opportunities and Threats Analysis of Bioenergy Production on Marginal Land. Energy Procedia 5, 2378, 2011.
  • 14. THORNTON G., FRANZ M., EDWARDS D., PAHLEN G., NTHANAIL P. The Challenge of sustainability: initiatives for brownfield regeneration in Europe. Environmental Science and Policy 10, 116, 2007.
  • 15. GELFAND I., SAHAJPAL R., ZHANG X., IZAURRALDE R.C., GROSS K.L., ROBERTSON P. Sustainable bioenergy production from marginal lands in the US Midwest. Nature 493, 514, 2013.
  • 16. JEŻOWSKI S., MOS M., BUCKBY S., CERAZY-WALISZEWSKA J., OWCZARZAK W., MOCEK A., KACZMAREK Z., MCCALMONT J.P. Establishment, Growth, and Yield Potential of the Perennial Grass Miscanthus × Giganteus on Degraded Coal Mine Soils. Frontiers in Plant Science 8: 726, 2017.
  • 17. EUROPEAN ENVIRONMENTAL AGENCY. Report 6/2013, EU Bioenergy Potential from a Resource-efficiency Perspective, Publications Office of the European Union: Luxembourg, 60, 2013.
  • 18. DOHLEMAN F.G., HEATON E.A., ARUNDALE R.A., LONG S.P. Seasonal dynamics of above- and below-ground biomass and nitrogen partitioning in Miscanthus x giganteus and Panicum virgatum across three growing seasons. GCB Bioenergy 4, 53, 2012.
  • 19. PIDLISNYUK V., STEFANOVSKA T., LEWIS E.E., ERICKSON L.E., DAVIS, L.C. Miscanthus as a Productive Biofuel Crop for Phytoremediation. Critical Reviews in Plant Sciences 33 (1), 1, 2014.
  • 20. DRAŽIĆ G., ARANĐELOVIĆ M., MILOVANOVIĆ J., JUREKOVÁ Z., MARIŠOVÁ E. Potentials for agro-energy crops production: example of miscanthus cultivation in Serbia. Acta Regionalia et Environmentalica 2, 29, 2015.
  • 21. JEŻOVSKI S. Yield traits of six clones of Miscanthus in the first 3 years following planting in Poland. Industrial Crops and Products 27, 65, 2008.
  • 22. LEWANDOWSKI I., HEINZ A. Delayed harvest of Miscanthus - influences on biomass quantity and quality and environmental impacts of energy production. European Journal of Agronomy 19, 45, 2003.
  • 23. MILOVANOVIĆ J., DRAŽIĆ G., IKANOVIĆ J., JUREKOVA Z., RAJKOVIĆ S. Sustainable production of biomass through Miscanthus giganteus plantation development. Annals of Faculty Engineering Hunedoara International Journal of Engineering 10, 79, 2012.
  • 24. FARRAR K., HEATON E.A., TRINDADE L.M. Editorial: Optimizing Miscanthus for the Sustainable Bioeconomy: From Genes to Products. Frontiers in Plant Science 9, 878, 2018.
  • 25. LIU W., SANG T. Potential productivity of the Miscanthus energy crop in the Loess Plateau of China under climate change. Environmental Research Letters 8 (4), 044003, 2013.
  • 26. REPUBLIC AGENCY FOR SPATIAL PLANNING OF THE REPUBLIC OF SERBIA. Spatial Plan for the Republic of Serbia, Mining basins. Available online: http://www.rapp.gov.rs/en-GB/mining-basins/cid296/index/(accessed on 27 04 2018)
  • 27. INSTITUT MOL. Checking the impact ash and slag dumps TPP “Kolubara A” on the land in 2013, report I 661/13, 2013. [in Serbian]
  • 28. DRAŽIĆ G., MILOVANOVIĆ J., STEFANOVIĆ S., PETRIĆ I. Potential of Miscanthus × giganteus for heavy metals removing from Industrial deposol. Acta Regionalia et Environmentalica 14 (2), 56, 2018.
  • 29. DRAŽIĆ G., MILOVANOVIĆ J., IKANOVIĆ J., PETRIĆ I. Influence of fertilization on Miscanthus × giganteus (Greef et Deu) yield and biomass traits in three experiments in Serbia. Plant Soil and Environment 63, 189, 2017.
  • 30. MATYKA M., KUŚ J. Influence of Soil Quality for Yielding and Biometric Features of Miscanthus x Giganteus. Polish Journal of Environmental Studies 25 (1), 213, 2016.
  • 31. DŽELETOVIĆ Ž., MIHAILOVIĆ N., ZIVANOVIĆ I., PIVIĆ R., GLIŠIĆ I., SIMIĆ A. Phytostabilization of power plant ash deposits by bioenergy crop Miscanthus X giganteus. Ekologica 22 (78), 187, 2015 [In Serbian].
  • 32. REPUBLIC OF SERBIA. Regulation on the program quality monitoring system of land, indicators for assessing the risk of land degradation and methodology for making remediation programs. Official Gazette of RS 88, 2010.
  • 33. NSANGANWIMANA F., POURRUT B., MENCH M., DOUAY F. Suitability of Miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review. Journal of Environmental Management 143, 123, 2014.
  • 34. OBERNBERGER I., BRUNNER T., BARNTHALER G. Chemical properties of solid biofuels – significance and impact. Biomass Bioenergy 30, 973, 2006.
  • 35. BOSIACKI M. Influence of increasing nickel content in soil on Miscanthus × giganteus Greef and Deu. Yielding and on the content of nickel in above-ground biomass. Archives of Environmental Protection 41 (1), 72, 2015.
  • 36. RODIAS E., BERRUTO R., BOCHTIS D., BUSATO P., SOPEGNO A. A Computational Tool for Comparative Energy Cost Analysis of Multiple-Crop Production Systems, Energies 10, 831, 2017.
  • 37. MORAIS S.A., DELERUE-MATOS C. A. Perspective on LCA application in site remediation services: critical review of challenges. Journal of Hazardous Materials 175, 12, 2010.
  • 38. STEFANOVIĆ S., KOSTIĆ M., MILOŠEVIĆ D., DRAŽIĆ G. The influence of weed vegetation on the yield of miscanthus (Miscanthus x giganteus) on tailings RB Kolubara Tamnava East. Ekologica 23, 106, 2016 [In Serbian].
  • 39. LAI R., ARCA P., LAGOMARSINO A., CAPPAI C., SEDDAIU G., DEMURTAS C.E., ROGGERO P.P. Manure fertilization increases soil respiration and creates a negative carbon budget in a Mediterranean maize (Zea mays L.) - based cropping system. CATENA 151, 202, 2017.
  • 40. ROBERTSON A.D., WHITAKER J., MORRISON R., CHRISTIAN A., DAVIES C.A., SMITH P., MCNAMARA N.P. A Miscanthus plantation can be carbon neutral without increasing soil carbon stocks. GCB Bioenergy 9, 645, 2017.
  • 41. DRAŽIĆ G., MILOVANOVIĆ J., ARANDJELOVIĆ M. Biomass as a driving force for rural development - miscanthus best practices. Agriculture and Forestry 60 (2), 115, 2014.
  • 42. MAKSIMOVIĆ J., PIVIĆ R., STANOJKOVIĆ-SEBIĆ A., VUČIĆ-KIŠGECI M., KRESOVIĆ B., DINIĆ Z., GLAMOČLIJA Đ. Planting density impact on weed infestation and the yield of Miscanthus grown on two soil types. Plant Soil and Environment 62, 384, 2016.
  • 43. ACKOVA D.G. Heavy metals and their general toxicity on plants. Plant Science Today 5 (1), 14, 2018.
  • 44. NAGAJYOTI P.C., LEE K.D., SREEKANTH T.V.M. Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters 8 (3), 199, 2010.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7aa98af5-3138-4259-a8c2-af2202946e6b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.