PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 25 | 4 |

Tytuł artykułu

Error mitigation algorithm based on bidirectional fitting method for collision avoidance of unmanned surface vehicle

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Radars and sensors are essential devices for an Unmanned Surface Vehicle (USV) to detect obstacles. Their precision has improved significantly in recent years with relatively accurate capability to locate obstacles. However, small detection errors in the estimation and prediction of trajectories of obstacles may cause serious problems in accuracy, thereby damaging the judgment of USV and affecting the effectiveness of collision avoidance. In this study, the effect of radar errors on the prediction accuracy of obstacle position is studied on the basis of the autoregressive prediction model. The cause of radar error is also analyzed. Subsequently, a bidirectional adaptive filtering algorithm based on polynomial fitting and particle swarm optimization is proposed to eliminate the observed errors in vertical and abscissa coordinates. Then, simulations of obstacle tracking and prediction are carried out, and the results show the validity of the algorithm. Finally, the method is used to simulate the collision avoidance of USV, and the results show the validity and reliability of the algorithm

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

4

Opis fizyczny

p.13-20,fig.,ref.

Twórcy

autor
  • School of Transportation, Wuhan University of Technology, Heping Avenue No.1178, 430063 Wuhan, China
  • Key Laboratory of High Performance Ship Technology, Wuhan University of Technology, Ministry of Education, Heping Avenue No.1178, 430063 Wuhan, China
autor
  • Key Laboratory of High Performance Ship Technology, Wuhan University of Technology, Ministry of Education, Heping Avenue No.1178, 430063 Wuhan, China
autor
  • Key Laboratory of High Performance Ship Technology, Wuhan University of Technology, Ministry of Education, Heping Avenue No.1178, 430063 Wuhan, China
autor
  • Key Laboratory of High Performance Ship Technology, Wuhan University of Technology, Ministry of Education, Heping Avenue No.1178, 430063 Wuhan, China
autor
  • Key Laboratory of High Performance Ship Technology, Wuhan University of Technology, Ministry of Education, Heping Avenue No.1178, 430063 Wuhan, China

Bibliografia

  • 1. Li W. F., Ma W. Y., Simulation on Vessel Intelligent Collision Avoidance Based on Artificial Fish Swarm Algorithm. Polish Maritime Research, 2016, 23:138–143.
  • 2. Campbell S., Naeem W., Irwin G.W., A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance maneuver. Annual Reviews in Control, 2012, 36(2):267–283.
  • 3. Larson J., Bruch M., Halterman R., Rogers J., Webster R., Advances in Autonomous Obstacle Avoidance for Unmanned Surface Vehicles. Space and Naval Warfare Systems Center, San Diego, CA, 2007.
  • 4. U.S. department Homeland Security/U.S. Coast Guard, “Navigation Rules,” Paradise Cay Publications, 2010.
  • 5. Kim, H., Park, B., Myung, H., Curvature path planning with high resolution graph for unmanned surface vehicle. Robot Intelligence Technology and Applications, 2013, 208:147–154.
  • 6. Riccardo P., Sanjay S., Jian W., Andrew M., Robert S., Obstacle Avoidance Approaches for Autonomous Navigation of Unmanned Surface Vehicles. Journal of Navigation, 2017, 71(1): 1–16.
  • 7. Kuwata Y., Wolf M. T., Zarzhitsky D., Huntsberger T. L., Safe maritime autonomous navigation with COLREGS, using velocity obstacles, IEEE Journal of Oceanic Engineering, 2014, 39(1):110–119.
  • 8. Zhao Y. X., Wang L., Peng Sh., A real-time collision avoidance learning system for Unmanned Surface Vessels. Neurocomputing, 2016, 182:255–266.
  • 9. Park J. H., Kim J. W., Son N. S., Passive target tracking of marine traffic ships using onboard monocular camera for unmanned surface vessel. Ectronics letters, 2015, 51(31):987–989.
  • 10. Wang H., Mou, X. Zh., Mou W., Vision based Long Range Object Detection and Tracking for Unmanned Surface Vehicle.Proceedings of the 2015 7th IEEE International Conference on Cybernetics and Intelligent Systems and Robotics, Automation and Mechatronics, Cambodia, 2015:101–105.
  • 11. Lazarowska A., Swarm Intelligence Approach to Safe Ship Control. Polish Maritime Research, 2015, 22(4): 34–40.
  • 12. Zhong K., Lei X., Li SQ., Wiener filter preprocessing for OFDM systems in the presence of both nonstationary and stationary phase noises. EURASIP Journal on Advances in Signal Processing, 2013(7):1–9.
  • 13. Widrow B., Hoff M., Adaptive switch circuits. IRE Wescom, Convertion Record, Part 4, 1966:96–104.
  • 14. Wang X., Liu J. H., Zhou Q. F., Real-Time Multi-Target Localization from Unmanned Aerial Vehicles. Sensors, 2016, 17(1):33–43.
  • 15. Dichev D., Koev H., Bakalova T., An Algorithm for Improving the Accuracy of Systems Measuring Parameters if Moving Objects, Metrology and Measurement Systems, 2016, 23(4):555–565.
  • 16. Borodachev S. M., Recursive Least Squares Method of Regression Coefficients Estimation as a Special Case of Kalman Filter. International Conference on Numerical Analysis and Applied Mathematics, Rhodes, 2015:23–29.
  • 17. Singer R. A., Estimating Optimal Tracking Filter Performance for Manned Maneuvering Targets, IEEE Transaction on Aerospace and Electronic Systems, l970, 6(4):473–483.
  • 18. Zhou Zh., Liu J. M., Tan X. J., MCS Model Based on Jerk Input Estimation and Nonlinear Tracking Algorithm. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(10): 1397–1402.
  • 19. Zhu W., Wang W., Yuan G., An Improved Interacting Multiple Model Filtering Algorithm Based on the Cubature Kalman Filter for Maneuvering Target Tracking. Sensors, 2016, 16(6): 805–815.
  • 20. Afshari H. H., Al-Ani D., Habibi S., A New Adaptive Control Scheme Based on the Interacting Multiple Model (IMM) Estimation. Journal of Mechanical Science & Technology, 2016, 30 (6):2759–2767.
  • 21. Jin B., Jiu B., Su T., Switched Kalman Filter-Interacting Multiple Model Algorithm Based on Optimal Autoregressive Model for Manoeuvring Target Tracking. IET Radar Sonar and Navigation, 2015, 9(2): 199–209.
  • 22. Yousef, M. T., Ali, H. E. I., Habashy, S. M., Adaptive Controller based PSO with Virtual Sensor for Obstacle Avoidance in Dynamic Environments, Radio Science Conference, 2014, 228–235.
  • 23. Liu Y. Ch., Bucknall R., Path Planning Algorithm for Unmanned Surface Vehicle Formations in a Practical Maritime Environment, Ocean Engineering, 2015, 97:126–144.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-79d1bd92-082c-4e52-a190-d8afee86bc39
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.