PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 6 |

Tytuł artykułu

Immobilizing metal-resistant sulfate-reducing bacteria for cadmium removal from aqueous solutions

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Immobilized sulfate-reducing bacteria (SRB) in polyvinyl alcohol (PVA)-sodium alginate matrix were applied as biosorbents to remove cadmium (Cd) from aqueous solutions. Multiple characterization techniques including scanning electron microscope (SEM)-energy dispersive spectrometer (EDS), and Fourier transform infrared (FT-IR) spectra indicate that immobilized beads provided a suitable microenvironment for SRB. Performance tests show that Cd removal was highly affected by pH value and temperature, with optimum temperature at 35ºC and pH value of 8.0. A pseudo second-order model was applied to describe the adsorption kinetic. FT-IR and x-ray photoelectron spectroscopy (XPS) analyses imply that biosorption, sulfide, and hydroxide precipitation are the main mechanisms for removing Cd. The immobilized SRB beads have great potential for remediating Cd-containing wastewater.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

6

Opis fizyczny

p.2851-2859,fig.,ref.

Twórcy

autor
  • School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
  • Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
  • Guangzhou University-Linkoping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, China
autor
  • Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
autor
  • School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
  • Guangzhou University-Linkoping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, China
  • Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
autor
  • Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
  • Collaborative Innovation Center of Water Quality Safety and Protection in Pearl River Delta, Guangzhou University, Guangzhou, China
autor
  • School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
  • Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
autor
  • School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
  • Collaborative Innovation Center of Water Quality Safety and Protection in Pearl River Delta, Guangzhou University, Guangzhou, China
autor
  • School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
autor
  • School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
autor
  • School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China

Bibliografia

  • 1. ZHU X., SONG T., LV Z., JI G. High-efficiency and low-cost α-Fe₂O₃ nanoparticles-coated volcanic rock for Cd(II) removal from wastewater. Process Safety and Environmental Protection. 104, 373, 2016.
  • 2. CARRILLO ZENTENO M.D., DE FREITAS R.C.A., FERNANDES R.B.A., FONTES M.P.F., JORD O, C.P. Sorption of Cadmium in Some Soil Amendments for In Situ Recovery of Contaminated Soils. Water, Air, & Soil Pollution. 224 (2), 1418, 2013.
  • 3. KUMAR R., CHAWLA J. Removal of Cadmium Ion from Water/Wastewater by Nano-metal Oxides: A Review. Water Quality, Exposure and Health. 5 (4), 215, 2014.
  • 4. BASU M., GUHA A.K., RAY L. Adsorption Behavior of Cadmium on Husk of Lentil. Process Safety and Environmental Protection. 106, 11, 2017.
  • 5. WHO. Guidelines for drinking-water quality 2011.
  • 6. NEKOUEI S., NEKOUEI F., TYAGI I., AGARWAL S., GUPTA V.K. Mixed cloud point/solid phase extraction of lead(II) and cadmium(II) in water samples using modified-ZnO nanopowders. Process Safety and Environmental Protection. 99, 175, 2016.
  • 7. JOHRI N., JACQUILLET G., UNWIN R. Heavy metal poisoning: the effects of cadmium on the kidney. BioMetals. 23 (5), 783, 2010.
  • 8. TOUNSADI H., KHALIDI A., ABDENNOURI M., BARKA N. Biosorption potential of Diplotaxis harra and Glebionis coronaria L. biomasses for the removal of Cd(II) and Co(II) from aqueous solutions. Journal of Environmental Chemical Engineering. 3 (2), 822, 2015.
  • 9. ZHANG M., WANG H., HAN X. Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment. Chemosphere. 154, 215, 2016.
  • 10. LI X., DAI L., ZHANG C., ZENG G., LIU Y., ZHOU C., XU W., WU Y., TANG X., LIU W., LAN S. Enhanced biological stabilization of heavy metals in sediment using immobilized sulfate reducing bacteria beads with inner cohesive nutrient. Journal of Hazardous Materials. 324, 340, 2017.
  • 11. CRUZ VIGGI C., PAGNANELLI F., CIBATI A., UCCELLETTI D., PALLESCHI C., TORO L. Biotreatment and bioassessment of heavy metal removal by sulphate reducing bacteria in fixed bed reactors. Water research. 44 (1), 151, 2010.
  • 12. AYALA-PARRA P., SIERRA-ALVAREZ R., FIELD J.A. Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron. Journal of Hazardous Materials. 308, 97, 2016.
  • 13. ZHANG H., LI M., YANG Z., SUN Y., YAN J., CHEN D., CHEN Y. Isolation of a non-traditional sulfate reducingbacteria Citrobacter freundii sp and bioremoval of thallium and sulfate. Ecological Engineering. 102, 397, 2017.
  • 14. VALO R.J., H GGBLOM M.M., SALKINOJA-SALONEN M.S. Bioremediation of chlorophenol containing simulated ground water by immobilized bacteria. Water research. 24 (2), 253, 1990.
  • 15. BASKARAN V., NEMATI M. Anaerobic reduction of sulfate in immobilized cell bioreactors, using a microbial culture originated from an oil reservoir. Biochemical Engineering Journal. 31 (2), 148, 2006.
  • 16. NECULITA C.M., ZAGURY G.J., BUSSI RE B. Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria: critical review and research needs. Journal of Environmental Quality. 36 (1), 1, 2007.
  • 17. NOPCHAROENKUL W., NETSAKULNEE P., PINYAKONG O. Diesel oil removal by immobilized Pseudoxanthomonas sp. RN402. Biodegradation. 24 (3), 387, 2013.
  • 18. WILKINSON S.C., GOULDING K.H., ROBINSON P.K. Mercury removal by immobilized algae in batch culture systems. Journal of Applied Phycology. 2 (3), 223, 1990.
  • 19. CHEN W., ZHANG H., CHEN Y. Effect of pH, temperature and initial concentration on thallium removal by sulfate-reducing bacteria. Chinese Journal of Environmental Engineering. 8 (10), 4105, 2014.
  • 20. SUN J., LIU J., LIU Y., LI Z., NAN J. Optimization of Entrapping Conditions of Nitrifying Bacteria and Selection of Entrapping Agent. Procedia Environmental Sciences. 8, 166, 2011.
  • 21. PAN X.L., WANG J.L., ZHANG D.Y. Biosorption of Pb (II) by Pleurotus ostreatus immobilized in calcium alginate gel. Process Biochemistry. 40 (8), 2799, 2005.
  • 22. LI X.J., TANG D.L., TANG F., ZHU Y.Y., HE C.F., LIU M.H., LIN C.X., LIU Y.F. Preparation, characterization and photocatalytic activity of visible-light-driven plasmonic Ag/AgBr/ZnFe₂O₄ nanocomposites. Materials Research Bulletin. 56, 125, 2014.
  • 23. KARATAY S.E., KILI N.K., D NMEZ, G. Removal of Remazol Blue by azoreductase from newly isolated bacteria. Ecological Engineering. 84, 301, 2015.
  • 24. WILLOW M.A., COHEN R.R. pH, dissolved oxygen, and adsorption effects on metal removal in anaerobic bioreactors. Journal of Environmental Quality. 32 (4), 1212, 2003.
  • 25. HAO O.J., CHEN J.M., HUANG L., BUGLASS R.L. Sulfate-reducing bacteria. Critical Reviews in Environmental Science and Technology. 26 (2), 155, 1996.
  • 26. PARK Y.-J., KO J.-J., YUN S.-L., LEE E.Y., KIM S.-J., KANG S.-W., LEE B.-C., KIM S.-K. Enhancement of bioremediation by Ralstonia sp. HM-1 in sediment polluted by Cd and Zn. Bioresource Technology. 99 (16), 7458, 2008.
  • 27. BAJPAI J., SHRIVASTAVA R., BAJPAI A.K. Dynamic and equilibrium studies on adsorption of Cr(VI) ions onto binary bio-polymeric beads of cross linked alginate and gelatin. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 236 (1), 81, 2004.
  • 28. HAO T.-W., XIANG P.-Y., MACKEY H.R., CHI K., LU H., CHUI H.-K., VAN LOOSDRECHT M.C. CHEN, G.-H. A review of biological sulfate conversions in wastewater treatment. Water research. 65, 1, 2014.
  • 29. LONG J., LI H., JIANG D., LUO D., CHEN Y., XIA J., CHEN, D. Biosorption of strontium (II) from aqueous solutions by Bacillus cereus isolated from strontium hyperaccumulator Andropogon gayanus. Process Safety and Environmental Protection. 111, 23, 2017.
  • 30. HUANG F., DANG Z., GUO C.-L., LU G.-N., GU R.R., LIU H.-J., ZHANG H. Biosorption of Cd (II) by live and dead cells of Bacillus cereus RC-1 isolated from cadmium-contaminated soil. Colloids and Surfaces B: Biointerfaces. 107, 11, 2013.
  • 31. LI H., CHEN Y., LONG J., LI X., JIANG D., ZHANG P., QI J., HUANG X., LIU J., XU R., GONG J. Removal of thallium from aqueous solutions using Fe-Mn binary oxides. Journal of Hazardous Materials. 338, 296, 2017.
  • 32. HO Y.S., MCKAY G. A kinetic study of dye sorption by biosorbent waste product pith. Resources Conservation & Recycling. 25 (s 3–4), 171, 1999.
  • 33. L PEZ P REZ P.A., AGUILAR L PEZ R., NERIA GONZ LEZ M.I. Cadmium removal at high concentration in aqueous medium: mediated by Desulfovibrio alaskensis. International Journal of Environmental Science and Technology. 12 (6), 1975, 2015.
  • 34. HE J., CHEN J.P. A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools. Bioresource technology. 160, 67, 2014.
  • 35. CRUZ C.C., DA COSTA A.C.A., HENRIQUES C.A., LUNA A.S. Kinetic modeling and equilibrium studies during cadmium biosorption by dead Sargassum sp. biomass. Bioresource Technology. 91 (3), 249, 2004.
  • 36. PARDO R., HERGUEDAS M., BARRADO E., VEGA M. Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas putida. Analytical and bioanalytical chemistry. 376 (1), 26, 2003.
  • 37. SAPRA S., NANDA J., SARMA D., EL-AL F.A., HODES G. Blue emission from cysteine ester passivated cadmium sulfide nanoclusters. Chemical Communications. (21), 2188, 2001.
  • 38. NAUMANN A. Fourier Transform Infrared (FTIR) Microscopy and Imaging of Fungi. In: Dahms TES, Czymmek KJ, editors. Advanced Microscopy in Mycology. Cham: Springer International Publishing; 61, 2015.
  • 39. CAO J.-J., JIANG Z.-T., XIONG Z.-H., YANG Y.-N., CHEN S.-Y. Study on Infrared Spectra Characteristics of Fault Particles of the Sulfide Deposit. Spectroscopy and Spectral Analysis. 29 (4), 956, 2009.
  • 40. MARYCHURCH M., MORRIS G. X-ray photoelectron spectra of crystal and thin film cadmium sulphide. Surface Science Letters. 154 (2-3), L251, 1985.
  • 41. YU J., YU Y., ZHOU P., XIAO W., CHENG B. Morphology-ependent photocatalytic H2-production activity of CdS. Applied Catalysis B: Environmental. 156, 184, 2014.
  • 42. HOTA G., IDAGE S.B., KHILAR K.C. Characterization of nano-sized CdS–Ag₂S core-shell nanoparticles using XPS technique. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 293 (1), 5, 2007.
  • 43. BRION D. Photoelectron spectroscopic study of the surface degradation of pyrite (FeS₂), chalcopyrite (CuFeS₂), sphalerite (ZnS), and galena (PbS) in air and water. Applications of Surface Science. 5 (2), 133, 1980.
  • 44. DE BARROS M.I., BOUCHET J., RAOULT I., LE MOGNE T., MARTIN J.M., KASRAI M., YAMADA Y. Friction reduction by metal sulfides in boundary lubrication studied by XPS and XANES analyses. Wear. 254 (9), 863, 2003.
  • 45. DOU B., JIANG X., WANG X., TANG L., DU Z. Synthesis and photoelectric properties of cadmium hydroxide and cadmium hydroxide/cadmium sulphide ultrafine nanowires. Physica B: Condensed Matter. 516, 72, 2017.
  • 46. SETTY M.S., SINHA A.P.B. Characterization of highly conducting PbO-doped Cd₂SnO₄ thick films. Thin Solid Films. 144 (1), 7, 1986.
  • 47. WANG F.-Z., SHANG D.-C., WANG M.-G., HU S.-G., LI Y.-Q. Incorporation and substitution mechanism of cadmium in cement clinker. Journal of Cleaner Production. 112, 2292, 2016.
  • 48. LIM S.-F., ZHENG Y.-M., ZOU S.-W., CHEN J.P. Characterization of Copper Adsorption onto an Alginate Encapsulated Magnetic Sorbent by a Combined FT-IR, XPS, and Mathematical Modeling Study. Environmental Science & Technology. 42 (7), 2551, 2008.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7924c828-faa0-4e2c-bad4-b61f42fe6adf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.