PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 2 |

Tytuł artykułu

Unionized acetate degradation at 45ºC anaerobic digestion: kinetics and inhibition

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study demonstrated the degradation of unionized acetate in anaerobic digestion at 45ºC through the identification of kinetics and inhibition parameters. The kinetic parameters, Ks and rmax, were determined using Monod-based model for three different conditions, namely uninhibited, inhibited, and systems with high substrate condition. The Ks values for uninhibited condition were in the range of 0.124 to 0.191 mg/L as unionized HAc. Ks value of inhibited condition were at 0.027 mg/L as unionized HAc. Ks values for systems with high substrate condition were found to be in the range of 0.237 to 0.279 mg/L as unionized HAc. As for rmax, a 35ºC anaerobic digestion system showed the highest value at 0.166 mg/L/day – greater than the values of all 45ºC systems under all experimental conditions. Additionally, the inhibition parameter KI was also determined using the Michaelis-Menten model. The parameter was determined for inhibitory conditions resulting from high free NH₃ content. The inhibition type was uncompetitive with KI value of 0.072 mg/L as unionized HAc. The outcomes suggested that the methanogens responsible for the digestion process at 45ºC were thermo-tolerant acetate-utilizing methanogens of Methanosarcinaceae species, and the system will be totally inhibited with the presence of high free NH₃ content.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

2

Opis fizyczny

p.747-756,fig.,ref.

Twórcy

autor
  • Department of Civil Engineering, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
  • Department of Civil and Environmental Engineering, George Washington University, Washington, DC, USA
autor
  • Department of Civil and Environmental Engineering, George Washington University, Washington, DC, USA
autor
  • Department of Civil and Environmental Engineering, George Washington University, Washington, DC, USA

Bibliografia

  • 1. INCE E., INCE M., ONKAL E.G. Comparison of thermophilic and mesophilic anaerobic treatments for potato processing wastewater using a contact reactor. Global NEST Journal. 19 (2), 318, 2017.
  • 2. LABATUT R.A., ANGENENT L.T., SCOTT N.R. Conventional mesophilic vs. thermophilic anaerobic digestion: A trade-off between performance and stability? Water Res. 53, 249, 2014.
  • 3. LIU C., WANG W., ANWAR N., MA Z., LIU G., ZHANG R. Effect of organic loading rate on anaerobic digestion of food waste under mesophilic and thermophilic conditions. Energy Fuels. 31, 2976, 2017.
  • 4. MANEERAT K., BOONYARIT, N., SOMKIET, T., CHANTARAPOM, P. Comparative mesophilic and thermophilic anaerobic digestion of palm oil mill effluent using upflow anaerobic sludge blanket. Water Environ. Res. 84 (7), 577, 2012.
  • 5. MOSET V., POULSEN M., WAHID R., HOJBERG O., MOLLER H.B. Mesophilic versus thermophilic anaerobic digestion of cattle manure: Methane productivity and microbial ecology. Microbial Biotechnology. 8 (5), 787, 2015.
  • 6. GERARDI M.H. The microbiology of anaerobic digesters, John Wiley: Hoboken, NJ, USA, 2003.
  • 7. KAMALI M., GAMEIRO T., COSTA M.E.V., CAPELA I. Anaerobic digestion of pulp and paper mill wastes – An overview of the development and improvement opportunities. Chemical Engineering Journal. 298, 162, 2016.
  • 8. WANG X., LU X., LI F., YANG G. Effects of temperature and C/N ratio on the performance of anaerobic co-digestion of dairy manure, chicken manure and rice straw: Focusing on ammonia inhibition. PLoS ONE. 9 (5), e97265, 2014.
  • 9. YAN Z., SONG Z., LI D., YUAN Y., LIU X., ZHENG T. The effects of initial substrate concentration, C/N ratio, and temperature on solid state anaerobic digestion from composting rice straw. Bioresource Techn. 177, 266, 2015.
  • 10. GAO W.J., LEUNG K.T., QIN W.S., LIAO B.Q. Effects of temperature and temperature shock on the performance and microbial community structure of a submerged anaerobic membrane bioreactor. Bioresource Techn. 102, 8733, 2011.
  • 11. MOHD N.S., HUSNAIN T., LI B., RAHMAN A., RIFFAT R. Investigation of the performance and kinetics of anaerobic digestion at 45ºC. Journal of Water Resource and Protection. 7, 1099, 2015.
  • 12. PECES M., ASTALS S., MATA-ALVAREZ J. Response of a sewage sludge mesophilic anaerobic digester to short and long-term thermophilic temperature fluctuations. Chemical Engineering Journal. 233, 109, 2013.
  • 13. APPELS L., BAEYENS J., DEGREVE J., DEWIL R. Principles and potential of the anaerobic digestion of waste-activated sludge. Process in Energy and Combustion Science. 34 (6), 755, 2008.
  • 14. KARAKASHEV D., BATSTONE D.J., TRABLY E., ANGELIDAKI I. Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of Methanosaetaceae. Appl. Env. Microb. 72 (7), 5138, 2006.
  • 15. FOTODIS I.A., KARAKASHEV D., ANGELIDAKI, I. The dominant acetate degradation pathway/methanogenic composition in full-scale anaerobic digesters operating under different ammonia levels. Int. J. Environ. Sci. Technol. 11, 2087, 2014.
  • 16. FRANKE-WHITTLE I.H., WALTER A., EBNER C., INSAM H. Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities. Waste Management. 34, 2080, 2014.
  • 17. VRIEZE J.D., SAUNDERS A.M., HE Y., FANG J., NIELSEN P.H., VERSTRAETE W., BOON N. Ammonia and temperature determine potential clustering in the anaerobic digestion microbiome. Water Research. 75, 312, 2015.
  • 18. WANG H., FOTIDIS I.A., ANGELIDAKI I. Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate-oxidizing bacteria. FEMS Microbiol. Ecol. 91, fiv130, 2015.
  • 19. METCALF and EDDY. Wastewater engineering: Treatment and reuse, 4th ed.; Mc-Graw Hill: New York, NY, USA, 2003.
  • 20. MCCARTY P.L. Anaerobic waste treatment fundamentals – Part two – Environmental requirements and control. Public Work, 95 (9), 123, 1964.
  • 21. AYNUR S.K. Evaluation of enhanced digestion processes for treatment of municipal sludge and pathogen removal, PhD Thesis, George Washington University: Washington, DC, USA, 2011.
  • 22. MANI S., SUNDARAM J., DAS K.C. Process simulation and modelling: Anaerobic digestion of complex organic matter. Biomass Bioenergy. 93, 158, 2016.
  • 23. GAVALA H.N., YENAL U., SKIADAS I.V., WESTERMANN P., AHRING B.K. Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge: Effect of pre-treatment at elevated temperature. Water Research. 37, 4561, 2003.
  • 24. MLADENOVSKA Z., AHRING B.K. Growth kinetics of themophilic Methanosarcina spp. isolated from fullscale biogas plants treating animal manures. FEMS Microbiology Ecology. 31, 225, 2000.
  • 25. RAJAGOPAL R., MASSE, D.I., SINGH, G. A critical review of inhibition of anaerobic digestion process by excess ammonia. Bioresource Technology. 143, 632, 2013.
  • 26. YENIGUN O., DEMIREL B. Ammonia inhibition in anaerobic digestion: A Review. Process Biochemistry. 48, 901, 2013.
  • 27. BAI J., LIU H., YIN B., MA H.,CHEN X. Modified ADM1 for modelling free ammonia inhibition in anaerobic acidogenic fermentation with high-solid sludge. 52, 58, 2017.
  • 28. ANGELIDAKI I., ELLEGAARD L., AHRING B.K. A mathematical model for dynamic simulation of anaerobic digestion of complex substrates: Focusing on ammonia inhibition, Biotechnology and Bioengineering. 42, 159, 1993.
  • 29. JORDENING H.J., WINTER J. Environmental biotechnology: Concepts & application, Wiley: Weinheim, Germany, 2005.
  • 30. AMERICAN PUBLIC HEALTH ASSOCIATION. Standard methods for the examination of water and wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005.
  • 31. BELANCHE A., DOREAU, M., EDWARDS, J.E., MOORBY, J.M., PINLOCHE E., NEWBOLD, C.J. Shifts in the rumen microbiota due to the type of carbohydrate and level of protein ingested by dairy cattle are associated with changes in rumen fermentation. J Nutr. 142, 1684, 2002.
  • 32. SMITH H.S., MCCARTY P.L., KITANIDIS P.K. Spreadsheet method for evaluation of biochemical reaction rate coefficients and their uncertainties by weighted nonlinear least-squares analysis of the integrated Monod equation. Appl. Environ. Microbiol. 64 (6), 2044, 1998.
  • 33. RITTMAN B.E., MCCARTY P.L. Environmental biotechnology: Principles and applications, McGraw Hill: New York, NY, USA, 2000.
  • 34. MOHD N.S. Feasibility of anaerobic digestion at 45ºC, PhD Thesis, George Washington University: Washington, DC, USA, 2015.
  • 35. SHULER M.L., KARGI F. Bioprocess engineering basic concepts, Prentice Hall: Englewood Cliffs, NJ, USA, 2002.
  • 36. SPEECE R.E. Anaerobic biotechnology and odor/corrosion control for municipalities and industries, Archae Press: Nashville, TN, USA, 2008.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-78d4ee64-a4b8-4cbc-b078-b01f3a071ac8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.