PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 24 | 3 |

Tytuł artykułu

Response of oxidative stress variables, proteins, and chlorophyll in three plant species caused by moderate soil pollution with toxic elements

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The ecotoxicological effects in the field can be directly assessed by measuring the concentration of the pollutant in soil or plant samples, and also by measuring response variables such as biochemical ones. However, there are few such studies integrating data on pollutants and plant biochemical variables and there is a knowledge gap about how dominant species in various ecological contexts respond in all their plant parts to heavy metal stress by changing biochemical variables. In this context, the objective of the research reported here is to describe how select biochemical variables varied in three plant parts of three plant species sampled from two areas with different levels of pollution. It was also of interest to identify to what extent they could be used in the non-destructive routine monitoring of pollution in industrial areas. We found a systematic decrease of chlorophylls and carotenoids in the aboveground parts of all species, and an increase of protein concentrations in all species and plant parts coupled with a decrease of superoxide dismutase and peroxidase activity. Although these patterns were correlated with a decrease of toxic element concentrations, both as pseudo-total and available forms in all plant parts, we cannot conclude that only a change in toxic elements pollution led to the observed patterns, because P nutrition also differed between plants. A further key direction of research is to clarify how the available major nutrients (N, P) modulate bioaccumulation of toxic elements and what effects they might have on biochemical variables of plants, in particular on oxidative stress.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

24

Numer

3

Opis fizyczny

p.1219-1234,fig.,ref.

Twórcy

autor
  • Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Road, District 5, Bucharest, Romania
autor
  • Research Centre for Ecological Services (CESEC), Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei Street, District 5, Bucharest, Romania
autor
  • Department of Statistics, University of Glasgow, G12 8QQ Glasgow, Scotland, U.K.
autor
  • Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Road, District 5, Bucharest, Romania
autor
  • Research Centre for Ecological Services (CESEC), Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei Street, District 5, Bucharest, Romania

Bibliografia

  • 1. MALEVA M.G., NEKRASOVA G.F., BORISOVA G.G., CHUKINA N.V., USHAKOVA O.S. Effect of heavy metals on photosynthetic apparatus and antioxidant status of Elodea. Russ. J. Plant Physiol. 59, (2), 190, 2012.
  • 2. XIANCAN Z., FENGBIN S., HONGWEN X. Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza 20, 325, 2010.
  • 3. JALEEL C.A., RIADH K., GOPI R., MANIVANNAN P., INÉS J., AL-JUBURI H.J., CHANG-XING Z., HONG-BO S., PANNEERSELVAM R. Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol. Plant 31, 427, 2009.
  • 4. KHALVATI M., BARTHA B., DUPIGNY A., SCHRÖDER P. Arbuscular mycorrhizal association is beneficial for growth and detoxification of xenobiotics of barley under drought stress. J. Soils Sediments 10, 54, 2010.
  • 5. GASSIC C., KORBAN S. Heavy metal stress. In: Matkawa Rao K.W., Raghawedra A.S., Janardhan R. (Eds). Plant Physiology and Molecular Biology of Stress Tolerance, Springer-Verlag, pp. 219-225, 2005.
  • 6. SINGH J., KALAMDHAD A.S. International Journal of Environmental Engineering Research 2, (2), 27, 2013.
  • 7. ARZANESH M., ALIKHANI H., KHAVAZI K., RAHIMIAN H., MIRANSARI M. Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World J. Microbiol. and Biotechnol. 27, 197, 2011.
  • 8. DAZY M., BÉRAUD E., COTELLE S., GRÉVILLIOT F., FÉRARD J.F., MASFARAUD J.F. Changes in plant communities along soil pollution gradients: Responses of leaf antioxidant enzyme activities and phytochelatin contents. Chemosphere 77, 376, 2009.
  • 9. AL SAYEGH PETKOVŠEK S. Forest biomonitoring of the largest Slovene thermal power plant with respect to reduction of air pollution. Environ. Monit. Assess. 185, 1809, 2013.
  • 10. CSEREKLYE E.K. Monitoring of landscape combinations and concourses in the Hungarian Danube-bend. J. Environ. Eng. Landscape Manag. 18, 1, 2010.
  • 11. LIGOCKI M., TARASEWICZ Z., ZYGMUNT A., ANIŚKO M. The common dandelion (Taraxacum Officinale) as an indicator of anthropogenic toxic metal pollution of environment. Acta Sci. Pol. Zootechnica 10, (4), 73, 2011.
  • 12. MARTINESCU D.M., CĂPUŞNEANU S. Environment and environmental effects of pollution. Model of eco-dashboard - A tool for analysis of environmental management performances. Metalurgia International 14, (12), 113, 2010. http://mpra.ub.uni-muenchen.de/26923/.
  • 13. NOTCUTT G., DAVIES F. Environmental accumulation of airborne fluorides in Romania. Environ. Geoch. Hlth. 23, 43, 2001.
  • 14. CHEVERESAN M.I., MINCIUNĂ M.N., DROBOT R. Spatial data infrastructure for groundwater integrated management with application in three case studies in Romania. WSEAS Transactions Environ. Develop. 11, (5), 673, 2009.
  • 15. FAO-UNESCO. Soil Map of the World, 9 volumes. UNESCO, Paris, France, 1974.
  • 16. UNDP PROJECT ROM 98/012. Local agenda 21 – Local Plan for Sustainable Development of Slatina Municipality. Tradition and Development, pp. 95, 2004. www.undp.ro/projects.php (Romanian language)
  • 17. HOFFMANN G. Book of Methods, Volume 1, The analysis of soils, VDLUFA Publishing House, Darmstadt, 1991.
  • 18. ZEIEN H., BRÜMMER G.W. Chemical extraction for the determination of heavy metal binding forms in soil. German communication, Soil Science Society. 59, 505, 1989.
  • 19. NEAGOE A., EBENA G., CARLSSON E. The effect of soil amendments on plant performance in an area affected by acid mine drainage. Chem. Erde-Geochem. 65, 115, 2005.
  • 20. LOWRY O.H., ROSEBROUGH N.J., FARR A.L., RANDALL R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265, 1951.
  • 21. MCCORD J.M., FRIDOVICH I. Superoxide dismutase: an enzymatic function for erythrocuprein. J. Biol. Chem. 244, 6049, 1969.
  • 22. LAGRIMINI L.M. Wound-induced deposition of polyphenols in transgenic plants overexpressing peroxidase. Plant Physiol. 96, 577, 1991.
  • 23. HODGES M.D., DELONG J.M., FORNEY C.F., PRAUGE R.K. Improving the thiobarbituric acid-reactive substances assay for estimating lipid peroxidation in plant tissues containing anthocyan and other interfering compounds. Planta 207, 607, 1999.
  • 24. SCHOPFER P. Experimental plant physiology Introduction to the application. Volume 2, Springer Berlin, 1989.
  • 25. UUSIPAIKKA E. Exact simultaneous Confidence Intervals for multiple comparisons among three or four mean values. J. Am. Stat. Assoc. 80, 196, 1985.
  • 26. INRA. Reference Pedology, French Association of Soil Study, pp. 332, 1995.
  • 27. GRIFFIN G., JOKELA W., ROSS D., PETTINELLI D., MORRIS T., WILF A. Recommended Soil Nitrate Tests. In: Northeastern Regional Publication (Ed.). Recommended Soil Testing Procedures for the Northeastern United States. Cooperative Bulletin No. 493, pp 27-38, 2009.
  • 28. HOWARD A.E. Agronomic thresholds for soil phosphorus in Alberta: A review. In: Alberta Soil Phosphorus Limits Project. Volume 5: Background information and reviews. Alberta Agriculture, Food and Rural Development, Lethbridge, Alberta, Canada. Publishing: Irrigation Branch Alberta Agriculture, Food and Rural Development Lethbridge, Alberta, Canada, pp. 42, 2006.
  • 29. ARSHAD M.A., MARTIN S. Identifying critical limits for soil quality indicators in agro-ecosystems. Agr. Ecosyst. Environ. 88, 153, 2002.
  • 30. EFFROYMSON R.A., WILL M.E., SUTER G.W., WOOTEN A.C. Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Terrestrial Plants. Prepared for the U.S. Department of Energy, Office of Environmental Management, ES/ER/TM-85/R3, 1997.
  • 31. KABATA-PENDIAS A., PENDIAS H. Trace elements in soils and plants, 3rd (Ed.), CRC Press, Boca Raton, Florida, 2001.
  • 32. SENILA M. Real and simulated bioavailability of lead in contaminated and uncontaminated soils. Journal of Environmental Health Science & Engineering 12, 108, 2014.
  • 33. BECHERESCU D., DASCĂLU D., SUSINSKI M. The set up of the fertilizer doses in function of the agrochemical analyses with some field crops on a soil from Slatina - Coteana, district Olt. Annals of the University of Craiova, Agr. Montan. Cadastre series 39, 320, 2009.
  • 34. KATANA S.J.S., UCAKUWUN E.K., MUNYAO T.M. Detection and prediction of land cover changes in upper Athi River catchment, Kenya: A strategy towards monitoring environmental changes. Greener Journal of Environment Management and Public Safety 2, (4), 146, 2013.
  • 35. GUAN D., LIU Z., GENG Y., LINDNER S., HUBACEK K. The gigatonne gap in China’s carbon dioxide inventories. Nature Climate Change 2, 672, 2012.
  • 36. ZHENG G.D., CHEN T.B., GAO D., LUO W. Stabilization of nickel and chromium in sewage sludge during aerobic composting. J. Hazard. Mater. 142, 216, 2007.
  • 37. MARTINEZ C.E., MOTTO H.L. Solubility of lead, zinc, and copper added to mineral soils. Environ. Pollut. 107, (1), 153, 2000.
  • 38. GUPTA A.K., SINHA S. Phytoextraction capacity of the plants growing on tannery sludge dumping sites. Bioresource Technol. 98, 1788, 2007.
  • 39. NEAGOE A., IORDACHE V., FARCASANU I. The Role of Organic Matter in the Mobility of Metals in Contaminated Sites in Soil Biology. Volume 31: Bio-Geo Interactions in Metal-Contaminated Soils. Kothe E., Varma A. (Eds), Springer-Verlag Berlin Heidelberg, pp. 423, 2012.
  • 40. SMITH S.R. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environment Internation. 35, 142, 2009.
  • 41. SINGH J., KALAMDHAD A.S. Effects of heavy metals on soil, plants, human health and aquatic life. International Journal of Research Chemistry and Environment 1, (2), 15, 2011.
  • 42. BIALOWIEC A., DAVIES L., ALBUQUERQUE A., RANDERSON P. Nitrogen removal from landfill leachate in constructed wetlands with reed and willow: Redox potential in the root zone. J. Environ. Manage. 97, 22, 2012.
  • 43. REVATHI S., SUBHASHREE VENUGOPAL Physiological and biochemical mechanisms of heavy metal tolerance. Int. J. Environ. Sci. 3, (5), 1339, 2013.
  • 44. APPENROTH K.J. Definition of “Heavy Metals” and Their Role in Biological Systems. In: Sherameti I., Varma A. (eds). Soil Heavy Metals, Soil Biology, Springer-Verlag Berlin Heidelberg, 19, 19, 2010.
  • 45. MALIZIA D., GIULIANO A., ORTAGGI G., MASOTTI A. Common plants as alternative analytical tools to monitor heavy metals in soil. Chem. Cent. J. 6, (2), S6, 2012. http://journal.chemistrycentral.com/content/6/S2/S6
  • 46. SYTAR O., KUMAR A., LATOWSKI D., KUCZYNSKA P., STRZAŁKA K., PRASAD M.N.V. Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol. Plant. 35, 985, 2013.
  • 47. PAL R.S., AGRAWAL P.K., BHATT J.C. Molecular Approach towards the Understanding of Defensive Systems against Oxidative Stress in Plant: A Critical Review. Int. J. Pharm. Sci. Rev. Res. 22, (2), No. 24, 131, 2013.
  • 48. MAESTRI E., MARMIROLI M. Genetic and molecular aspects of metal tolerance and hyperaccumulation. In: Gupta D.K. and Sandalio L.M. (Eds). Metal toxicity in plants: Perception, signaling and remediation. Springer-Verlag Berlin Heidelberg, pp 41-63, 2012.
  • 49. BOTHE H. Plants in heavy metal soils. In: Sheramati I. and Varma A. (eds). Detoxification of heavy metals. Soil Biology 30. Springer-Verlag Berlin, pp. 35-57, 2012.
  • 50. CLEMENS S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88, 1707, 2006.
  • 51. ADRIANO D.C. Trace Elements in Terrestrial Environments. Biogeochemistry, Bioavailability and Risk of Metals, 2nd ed.; Springer-Verlag New York Berlin Heidelberg, pp. 866, 2001.
  • 52. MEHES-SMITH M., NKONGOLO K., CHOLEWA E. Coping Mechanisms of Plants to Metal Contaminated Soil. In: Environmental Change and Sustainability, INTECH, pp 53-90, 2013. http://creativecommons.org/licenses/by/3.0http://dx.doi.org/10.5772/ 55124.
  • 53. GUALA S., VEGA F.A., COVELO E.F. Modeling the plantsoil interaction in presence of heavy metal pollution and acidity variations. Environ. Monit. Assess. 185, 73, 2013.
  • 54. NEAGOE A., IORDACHE V., BERGMANN H., KOTHE E. Pattern of variations of effects of arbuscular mycorrhizal fungi on plants grown in contaminated soil. J. Plant Nutr. Soil Sci. 176, 273, 2013.
  • 55. NEAGOE A., STANCU P., NICOARĂ A., ONETE M., BODESCU F., GHEORGHE R., IORDACHE V. Effects of arbuscular mycorrhizal fungi on Agrostis capillaris grown on amended mine tailing substrate at pot, lysimeter and field plot scales. Environ. Sci. Pollut. Res. 2013.
  • 56. NICOARĂ A., STANCU P., NEAGOE A., DE GIUDICI G., KOTHE E., IORDACHE V. Coupled pot and lysimeter experiments assessing plant performance in microbially assisted phytoremediation. Environ. Sci. Pollut. Res. DOI 10.1007/s11356-013-2489-9, 2013.
  • 57. SÁNCHEZ-VIVEROS G., FERRERA-CERRATO R., ALARCÓN A. Short-term effects of arsenate-induced toxicity on growth, chlorophyll and carotenoid contents, and total content of phenolic compounds of Azolla filiculoides. Water Air Soil Pollut. 217, 455, 2011.
  • 58. MASCHER R., LIPPMANN B., HOLZINGER S., BERGMANN H. Arsenate toxicity: effects on oxidative stress response molecules and enzymes in red clover plants. Plant Sci. 163, (5), 961, 2002.
  • 59. KANOUN-BOULÉ M., VICENTE J.A.F. Ecophysiological tolerance of duckweeds exposed to copper. Aquat. Toxicol. 91, 1, 2009.
  • 60. MARSCHNER H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press, London, pp. 889, 1995.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-78cc212d-9f7d-478f-a1f8-0b1bb55922f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.