PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 60 | 2 |

Tytuł artykułu

Computer databases in classification and characteristics of proteins as a source of bioactive peptides

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Classification of proteins as precursors of bioactive peptides is presented in this work. To achieve this aim, the worldwide available computer databases such as BIOPEP, CATH, PDB, and SCOP were applied. The main qualitative criterion to classify the proteins was the integrated coefficient of biological activity of protein (C) defined as a square root of the sum of squares of (A) for different activities divided by the number of activities, where (A) denotes the frequency of occurrence of fragments with a given activity in a protein sequence and is described as the number of fragments with a given activity divided by the number of amino acid residues of a protein chain taken for an analysis. Taking into consideration the coefficient (C) calculated for 126 animal and plant proteins, three families were distinguished. In the family containing proteins – the poorest source of bioactive fragments, were e.g. leguminlike chains of pumpkin, ginkgo biloba isolated from primary endosperm, vicia faba, and faba bean. Proteins being the best source of bioactive fragments (e.g. proteins derived from milk, bovine and chicken meat and wheat) were classified into the 1st family. It was found out that such a family classification is not identical with protein classification according to the criteria proposed and applied in the other computer databases. However, some proteins contained similar bioactive fragments within the sequence chains as well as possessed similar functions or structural motifs (e.g. TIM barrel motif). It can be presumed about the evolutionary similarity of proteins as a source of bioactive peptides.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

60

Numer

2

Opis fizyczny

p.139-146,ref.

Twórcy

autor
  • Chair of Food Biochemistry, Faculty of Food Science, Warmia and Mazury University in Olsztyn, Pl. Cieszynski 1, 10-726 Olsztyn, Poland

Bibliografia

  • 1. Andreeva A., Howorth D., Chandonia J.-M., Brenner S.E., Hubbard T.J.P., Chothia C., Murzin A.G., Data growth and its impact on the SCOP database: new developments. Nucl. Acids Res., 2008, 36, D419-D425.
  • 2. Apweiler R., Biswas M., Fleischmann W., Kanapin A., Karavidopoulou Y., Kersey P., Kriventseva E.V., Mittard V., Mulder N., Phan J., Zdobnov E., Proteome analysis database: on line application of InterPro and CluStr for the functional classification of proteins in whole genomes. Nucl. Acids Res., 2001, 29, 44–48.
  • 3. Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E., The Protein Data Bank. Nucl. Acids Res., 2000, 28, 235–242.
  • 4. Branden C., Tooze J., Introduction to Protein Structure. 1999, Garland Publishing Inc., New York, p. 24.
  • 5. Bray J.E., Todd A.E., Pearl F.M., Thornton J.M., Orengo C.A., The CATH dictionary of homologous superfamilies (DHS): a consensus approach for identifying distant structural homologies. Protein Eng., 2000, 13, 153–166.
  • 6. Desiere F., German B., Watzke H., Pfeifer A., Saguy S., Bioinformatics and data knowledge: the new frontiers for nutrition and foods. Trends Food Sci. Technol., 2001, 12, 215–229.
  • 7. Dziuba J., Iwaniak A., Database of protein and bioactive peptide sequences. 2006, in: Nutraceutical Proteins and Peptides in Health and Disease (eds. Mine Y., F. Shahidi). CRC Press, Taylor & Francis Group, Boca Raton, Florida, pp. 543–564.
  • 8. Dziuba J., Iwaniak A., Food proteins as the source of bioactive peptides. 2003, Plenary lecture delivered at the 2nd National Congress of Biotechnology, 23–27 June, Łódź (in Polish).
  • 9. Dziuba M., Dziuba B., Iwaniak A., Milk proteins as precursors of bioactive peptides. Acta Sci. Polon. Technol. Aliment., 2009, 8, 71–90.
  • 10. Dziuba J., Iwaniak A., Minkiewicz P., Computer-aided characteristics of proteins as potential precursors of bioactive peptides. Polimery, 2003a, 48, 50–53.
  • 11. Dziuba J., Iwaniak A., Niklewicz M., Minkiewicz P., Bovine β-lactoglobulin and other lipocalin as the source of bioactive peptides. Curr. Top. Protein Pept. Res., 2003b, 5, 101–104.
  • 12. Farber G.K., An α/β–barrel full of evolutionary trouble. Curr. Opin. Struct. Biol., 1993, 3, 409–412.
  • 13. Flower D.R., North A.C.T., Sansom C.E., The new lipocalin protein family: structural and sequence overview. Biochim. Biophys. Acta, 2000, 1482, 9–24.
  • 14. Gough J., Chothia C. SUPERFAMILY: HMMS representing all proteins of known structure. SCOP sequence searches, alignments and genome assignments. Nucl. Acids Res., 2002, 30, 268–272.
  • 15. Häger K.-P., Braun H., Czihal A., Mûller B., Bäumlein H., Evolution of seed storage protein genes: Legumin genes of Ginkgo biloba. J. Mol. Evol., 1995, 41, 457–466.
  • 16. Iwaniak A., Dziuba J., Niklewicz M., The BIOPEP database – a tool for the in silico method of classification of food proteins as the source of peptides with antihypertensive activity. Acta Alim., 2005, 34, 417–425.
  • 17. Iwaniak A., Minkiewicz P., Biologically active peptides derived from proteins. Pol. J. Food Nutr. Sci., 2008, 58, 289–294.
  • 18. Kamiński S., Cieślińska A., Kostyra E., Polymorphism of bovine beta-casein and its potential effect on human health. J. Appl. Gen., 2007, 48, 189–198.
  • 19. Karelin A.A., Philippova M.M., Karelina E.V., Strizhkov B.N., Grishina G.A., Nazimov I.V., Ivanov V.T., Peptides from bovine brain: structure and biological role. J. Pept. Sci., 1998, 4, 211.
  • 20. Kitts D.D., Weiler K., Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr. Pharm. Des., 2003, 9, 1309–1323.
  • 21. Korhonen H., Pihlanto A., Bioactive peptides: production and functionality. Int. Dairy J., 2006, 16, 945–960.
  • 22. Kubicz A., The secrets of molecular evolution. 1999, PWN, Warszawa, p. 15 (in Polish).
  • 23. Minkiewicz P., Dziuba J., Darewicz M., Iwaniak A., Dziuba M., Nałęcz D., Food peptidomics. Food Technol. Biotechnol., 2008, 46, 1–10.
  • 24. Orengo C.A., Michie A.D., Jones S., Jones D.T., Swindells M.B., Thornton J.M., Cath – a hierarchic classification of protein domain structures. Structure, 1997, 5, 1093–1108.
  • 25. Pripp H.A., Quantitative structure-activity relationship of prolyl oligopeptidase inhibitory peptides derived from β-casein using simple amino acid descriptors. J. Agric. Food Chem., 2006, 54, 224–228.
  • 26. Pripp A.H., Ardö Y., Modelling relationship between angiotensin- (I)-converting enzyme inhibition and the bitter taste of peptides. Food Chem., 2007, 102, 880–888.
  • 27. Wang W., Gonzalez de Mejia E.G., A new frontier in soy bioactive peptides that may prevent age-related chronic diseases. Comp. Rev. Food Sci. Food Safety, 2006, 4, 63–78.
  • 28. Whitfield E.J., Pruess M., Apweiler R., Bioinformatics database infrastructure for biotechnology research. J. Biotechnol., 2006, 124, 629–639.
  • 29. Wu J., Aluko R.E., Nakai S., Structural requirements of angiotensin I-converting enzyme inhibitory peptides: quantitative structure-activity relationship study of di- and tripeptides. J. Agric. Food Chem., 2006, 54, 732–738.
  • 30. Yoshikawa M., Takahashi M., Yang S., Delta opioid peptides derived from plant proteins. Cur. Pharm. Des., 2003, 9, 1325–1330.

Uwagi

PL
Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7866c32f-08ac-4ed8-9a68-9f6866b5a597
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.