PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 21 | 4 |

Tytuł artykułu

The growth performance and meat quality of goats fed diets based on maize or wheat grain

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A total of 24 four-month-old Liuyang Black wether goats (10±0.2 kg) were allotted to two diets based on wheat and maize to investigate effects of starch sources on the growth performance and meat quality. The experimental period lasted for 100 days, including 10 days for adaptation. Five representative goats from each group were selected for slaughter on the last experimental day. The final body weight and body weight gain of goats in wheat group were lower than those of goats in maize group (P<0.05), however, the marbling score of the Longissimus dorsi of goats in wheat group was greater than that of goats in maize group (P<0.05). Fatty acid composition of Longissimus dorsi muscle was also different between wheat group and maize group, for example, the proportion of C14:0 in Longissimus dorsi muscle of goats in wheat group was greater than that of goats in maize group (P<0.05), and the proportion of C18:3 in Longissimus dorsi muscle of goats in wheat group was smaller than that of goats in maize group. Results indicate that growth performance of the goats fed the diet based on maize was better and the proportion of 18:3 fatty acids and marbling score of Longissimus dorsi muscle was smaller in comparison with the goats fed the diet based on wheat.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

21

Numer

4

Opis fizyczny

p.587-598,ref.

Twórcy

autor
  • Key Laboratory of Bio-feed and Animal Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, P.R. China
autor
  • Key Laboratory of Bio-feed and Animal Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, P.R. China
autor
  • Key Laboratory of Bio-feed and Animal Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, P.R. China
autor
  • Key Laboratory of Bio-feed and Animal Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, P.R. China
autor
  • Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, P.R. China
autor
  • Liuyang Black Goat Reproduction Center, Liuyang 410300, P.R. China
autor
  • Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, P.R. China
autor
  • Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, P.R. China

Bibliografia

  • Abdelgadir I.E.O., Morrill J.L., 1995. Effect of processing sorghum grain on dairy calf performance. J. Dairy Sci. 78, 2040-2046
  • AOAC, 1995. Association of Official Analytical Chemists, Official Methods of Analysis. 16th Edition. Washington, DC
  • Aurousseau B., Bauchart D., Calichon E., Micol D.,Priolo A., 2004. Effect of grass or concentrate feeding systems and rate of growth on triglyceride and phospholipid and their fatty acids in the M. longissimus thoracis of lambs. Meat Sci. 66, 531-541
  • Banskalieva V., Marinova P., Monin G., Popova T., Ignatova M., 2005. Manipulating of the carcass and meat quality in lamb meat producing for the European Market II. Fatty acid composition of fat depots of lambs grown under two different production systems. Bulg. J. Agr. Sci. 11, 603-610
  • Bas P., Morand-Fehr P., 2000. Effect of nutritional factors on fatty acid composition of lamb fat deposits. Livest. Prod. Sci. 64, 61-79
  • Beharka A.A., Nagaraja T.G., Morrill J.L., Kennedy G.A., Klemm R.D., 1998. Effects of form of the diet on anatomical, microbial, and fermentative development of the rumen of neonatal. calves. J. Dairy Sci. 81, 1946-1955
  • Boles J.A., Bowman J.G.P., Boss D.L., Surber L.M.M., 2005. Meat color stability affected by barley variety in finishing diet to beef steers. Meat Sci. 70, 633-638
  • Burke J.M., Apple J.K., 2007. Growth performance and carcass traits of forage-fed hair sheep wethers. Small Ruminant Res. 67, 264-270
  • CIE, 1986. Commission International d’Eclairage. Colorimetry. 2nd Edition. Publication CIE 15.2, Vienna
  • Coverdale J.A., Tyler H.D., Quigley J.D., Brumm J.A., 2004. Effect of various levels of forage and form of diet on rumen development and growth in calves. J. Dairy Sci. 87, 2554-2562
  • Fiems L.O., Campeneere S.D., Cottyn B.G., Vanacker J.M., Heer B.G.J.D., Boucqué C.H.V., 1999. Effect of amount and degradability of dietary starch on animal performance and meat quality in beef bulls. J. Anim. Physiol. Anim. Nutr. 82, 217-226
  • Folch J., Lees M., Sloan-Stanley G.N., 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497-509
  • Gatellier P., Mercier Y., Juin H., Renerre M., 2005. Effect of finishing mode (pasture or mixed diet) on lipid composition, color stability and lipid oxidation in meat from Charolais cattle. Meat Sci. 69, 175-186
  • Gilbert C.D., Lunt D.K., Miller R.K., Smith S.B., 2003. Carcass, sensory, and adipose tissue traits of Brangus steers fed casein-formaldehyde-protected starch and/or canola lipid. J. Anim. Sci. 81, 2457-2468
  • Gill R.K., VanOverbeke D.L., Depenbusch B., Drouillard J.S., Dicostanzo A., 2008. Impact of beef cattle diets containing corn or sorghum distillers grains on beef color, fatty acid profiles, and sensory attributes. J. Anim. Sci. 86, 923-935
  • Hoover W.H., Stokes S.R., 1991. Balancing carbohydrates and protein for optimum rumen microbial yield. J. Dairy Sci. 74, 3630-3644
  • Huuskonen A., 2009. The effect of cereal type (barley versus oats) and rapeseed meal supplementation on the performance of growing and finishing dairy bulls offered grass silage-based diets. Livest. Sci. 122, 53-62
  • ISO, 1978. Animal Feeding Stuffs - Determination of Crude Ash. ISO 5984 International Organization for Standardization. Geneva (Switzerland)
  • Khan M.A., Lee H.J., Lee W.S., Kim H.S., Kim S.B., Ki K.S., Park S.J., Ha J.K., Choi Y.J., 2007. Starch source evaluation in calf starter: I. Feed consumption, body weight gain, structural growth, and blood metabolites in Holstein calves. J. Dairy Sci. 90, 5259-5268
  • Koenig K.M., Beauchemin K.A., 2005. Barley- versus protein-supplemented corn-based diets for feedlot cattle evaluated using the NRC and CNCPS beef models. Can. J. Anim. Sci. 85, 377-388
  • Lesmeister K.E., Tozer P.R., Heinrichs A.J., 2004. Development and analysis of a rumen tissue sampling procedure. J. Dairy Sci. 87, 1336-1344
  • Li Y., Watkins B.A., 1998. Conjugated linoleic acids alter bone fatty acid composition and reduce ex vivo prostaglandin E2 biosynthesis in rats fed n-6 or n-3 fatty acids. Lipids 33, 417-425
  • Lu D.X., Zhang P.Y., Wang X.M., 1996. Modern Method and Technology on Ruminant Nutrition Research. Chinese Agriculture Press, Beijing (China)
  • McEwen P.L., Mandell I.B., Brien G.,Campbell C.P., 2007. Effects of grain source, silage level, and slaughter weight endpoint on growth performance, carcass characteristics, and meat quality in Angus and Charolais steers. Can. J. Anim. Sci. 87, 167-180
  • Miller R.K., Rockwell L.C., Lunt D.K., Carstens G.E., 1996. Determination of the flavor attributes of cooked beef from cross-bred Angus steers fed corn- or barley-based diets. Meat Sci. 44, 235-243
  • Mills J.A.N., France J., Dijkstra J., 1999. A review of starch digestion in the lactating dairy cow and proposals for a mechanistic model: 1. Dietary starch characterization and ruminal starch digestion. J. Anim. Feed Sci. 8, 291-340
  • NRC, 2001. Nutrient Requirements of Dairy Cattle. 17th revised Edition. National Academy Press. Washington, DC
  • Ørskov E.R., 1975. Manipulating of rumen fermentation for maximum food utilization. World Rev. Nutr. Diet. 22, 152-182
  • Øskov E.R., Fraser C., Gordon J.G., 1974b. Effect of processing of cereals on rumen fermentation, digestibility, rumination time, and firmness of subcutaneous fat in lambs. Brit. J. Nutr. 32, 59-69
  • Øskov E.R., Fraser C., McHattie I., 1974a. Cereal processing and food utilization by sheep 2. A note on the effect of feeding unprocessed barley, maize, oats and wheat on food utilization by early weaned lambs. Anim. Prod. 18, 85-88
  • Owens F.N., Secrist D.S., Hill W.J., Gill D.R., 1998. Acidosis in cattle: A review. J. Anim. Sci. 76, 275-286
  • Owens F.N., Zinn R.A., Kim Y.K., 1986. Limits to starch digestion in the ruminant small intestine. J. Anim. Sci. 63, 1634-1648
  • Popova T., 2007. Effect of the rearing system on the fatty acid composition and oxidative stability of the M. longissimus lumborum and M. semimembranosus in lambs. Small Ruminant Res. 71, 150-157
  • Rhoades R.D., Sawyer J.E., Chung K.Y., Schell M.L., Lunt D.K., Smith S.B., 2007. Effect of dietary energy source on in vitro substrate utilization and insulin sensitivity of muscle and adipose tissues of Angus and Wagyu steers. J. Anim. Sci. 85, 1719-1726
  • Schoonmaker J.P., Cecava M.J., Faulkner D.B., Fluharty F.L., Zerby H.N., Loerch S.C., 2003. Effect of source of energy and rate of growth on performance, carcass characteristics, ruminal fermentation, and serum glucose and insulin of early-weaned steers. J. Anim. Sci. 81, 843-855
  • Suárez B.J., Van Reenen C.G., Stockhofe N., Dijkstra J., Gerrits W.J., 2007. Effect of roughage source and roughage to concentrate ratio on animal performance and rumen development in veal calves. J. Dairy Sci. 90, 2390-2403
  • Sun Z.H., Hu Y., Liu S.M.,Tang S.X., Han X.F., Zhou C.S., Wang M., He Z.X., Tan Z.L., 2011. Net nutrient flux in visceral tissues of goats fed diets based on maize or wheat. J. Anim. Feed Sci. 20, 26-35
  • Svihus B., Uhlen A.K., Harstad O.M., 2005. Effect of starch granule structure, associated components and processing on nutritive value of cereal starch: A review. Anim. Feed Sci. Tech. 122, 303-320
  • Swan C.G., Bowman J.G.P., Martin J.M., Giroux M.J., 2006. Increased puroindoline levels slow ruminal digestion of wheat (Triticum aestivum L.) starch by cattle. J. Anim. Sci. 84, 641-650 598
  • Szabó C., Jansman A.J.M., Babinszky L., Kanis E., Verstegen M.W., 2001. Effect of dietary protein source and lysine: DE ratio on growth performance, meat quality, and body composition of growing-finishing pigs. J. Anim. Sci. 79, 2857-2865
  • Tagari H., Webb K., Theurer B. et al., 2004. Portal drained visceral flux, hepatic metabolism, and mammary uptake of free and peptide-bound amino acids and milk amino acid output in dairy cows fed diets containing corn grain steam flaked at 360 or steam rolled at 490 g/L. J. Dairy Sci. 87, 413-430
  • Taniguchi K., Huntington G., Glenn B.P., 1995. Net nutrient flux by visceral tissues of beef steers given abomasal and ruminal infusions of casein and starch. J. Anim. Sci. 73, 236-249
  • Tiffany M.E., Spears J.W., 2005. Differential responses to dietary cobalt in finishing steers fed cornversus barley-based diets. J. Anim. Sci. 83, 2580-2589
  • Valin C., Renerre M., Touraille C.,Koop J., Sornay J., 1978. Effects of the nature of energy in food and use of anabolic agents on the quality of veal. Ann. Nutr. Aliment. 32, 857-868
  • Wiegand B.R., Sparks J.C., Parrish F.C., Zimmerman D.R., 2002. Duration of feeding conjugated linoleic acid influences growth performance,carcass traits, and meat quality of finishing barrows. J. Anim. Sci. 80, 637-643
  • Zhang H.F., Zhang Z.Y., 1998. Animal Nutrition Parameters and Feeding Standard. Chinese Agriculture Press. Beijing (China)

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-78559584-397e-4004-9eaa-d68bbddd67ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.