Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 4 |
Tytuł artykułu

The feasibility of using vegetation indices and soil texture to predict rice yield

Warianty tytułu
Języki publikacji
Identifying plant-environment interactions along with remote sensing provides grounds for designing management methods as well as predicting rice yield in different conditions; accordingly, it is very helpful to use vegetation indices for identifying the vegetation and greenness of farms. The regression between the local and high-yield varieties of rice in 2012 and the NDVI, SAVI, LAI, DVI, and RVI indices derived from Landsat 7 in northern Iran indicate the superiority of the NDVI index in the flowering stage of rice. Results show that the coefficient of determination of the fitted model for local and high-yielding varieties is 0.71 and 0.70, respectively, which indicates the good consistency of the results with the regional data. We evaluated the models for the local and high-yielding varieties in crop year 2013 with RMSE of 406 and 272 kg ha-1 and NRMSE of 12% and 6%, respectively. Moreover, the simulation results show that the yield of the models is well fitted with the observed values; besides, there is high correlation (R>0.80) between the real and predicted yield values. As shown by the investigation of the region’s soil texture, the fine-texture paddy fields have better yield.
Słowa kluczowe
Opis fizyczny
  • Science and Research Branch, Department of Soil Science, Faculty of Agriculture and Natural Resources, Islamic Azad University, Tehran, Iran
  • Science and Research Branch, Department of Soil Science, Faculty of Agriculture and Natural Resources, Islamic Azad University, Tehran, Iran
  • Lahijan Branch, Department of Water Engineering, Islamic Azad University, Lahijan, Iran
  • Soil and Water Research Institute, Tehran, Iran
  • 1. PRASAD A., CHAI L., SINGH R., KAFATOS M. Crop yield estimation model for Iowa using remote sensing and surface parameters. International Journal of Applied Observation and Geoinformation, 8, 26, 2006.
  • 2. MOSLEH M.K., HASSAN Q.K., CHOWDHURY E.H. Application of remote sensor in mapping rice area and forecasting its production: A Review. Sensors, 15, 769, 2015.
  • 3. WART J.V., KERSEBAUM K.CH., PENG S.H., MILNER M., CASSMAN K.G. Estimating crop yield potential at regional to national scales. Field Crops Research, 143, 34, 2013.
  • 4. AYOBI S.H., KHORMALI F., SAHRAWAT K.L. Relationships of barley biomass and grain yields to soil properties within a field in the arid region: Use of factor analysis. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 59, 107, 2009.
  • 5. AYOUBI SH., MOHAMMAD ZAMANI S., KHORMALI F. Spatial variability of some soil properties for site specific farming in northern Iran. International Journal of Plant Production, 1 (2), 225, 2007.
  • 6. DAVATGAR N., NEISHABOURI M.R., SEPASKHAH A.R. Delineation of site specific nutrient management zones for a paddy cultivated area based on fertility using fuzzy clustering. Geoderma, 173-174, 111, 2012.
  • 7. JUHOS K., SZABO S., LADANYI M. Influence of soil properties on crop yield: a multivariate statistical approach. International Agrophysics, 29, 425, 2015.
  • 8. TUECHE J.R. Relationships between soil physical properties and crop yields in different cropping systems in southern Cameroon. Ph.D Disseration, Faculty of Agricultural Sciences, Institute of Plant Production and Agroecology in the Tropics and Subtropics University of Hohenheim, 146, 2014.
  • 9. SIYAL A.A., DEMPEWOLF J., BECKER-RESHEF I. Rice yield estimation using Landsat ETM+ Data. Journal of Applied Remote Sensing, 9, 16, 2015.
  • 10. SON N.T., CHEN C.F., CHEN C.R., MINH V.Q., TRUNG N.H. A comparative analysis of multitemporal MODIS EVI and NDVI data for large-scale rice yield estimation. Agricultural and Forest Meteorology, 197, 52, 2014.
  • 11. WEI-GUO L., HUA L, LI-HUA Z. Estimating Rice Yield by HJ-1A Satellite Images. Rice Science, 18 (2), 142, 2011.
  • 12. NUARSA I.W., NISHIO F., HONGO CH. Rice yield estimation using Landsat ETM+ data and field observation. Journal of Agricultural Science, 4 (3), 45, 2012.
  • 13. LIN W., FU-CUN ZH., YUAN-SHU J., XIAO-DONG J., SHEN-BIN Y., XIAO-MEI H. Multi-temporal detection of rice phonological stages using canopy spectrum. Rice Science, 21 (2), 108, 2014.
  • 14. CHENG Q., WU X. Mapping paddy rice yield in Zhejiang Province using MODIS spectral index. Turkish Journal of Agriculture and Forestry, 35, 579, 2011.
  • 15. ALI S.M., MOHAMMED M.J. Gap-filling restoration methods for ETM+ sensor images. Iraqi Journal Science, 54 (1), 206, 2013.
  • 16. NOURELDIN N.A., ABOELGHAR M.A., SAUDY H.S., Ali A.M. Rice yield forecasting models using satellite imagery in Egypt. The Egyptian Journal of Remote Sensing and Space Sciences, 16, 125, 2013.
  • 17. MATINFAR H.R. Modeling wheat yield estimation base upon spectral data and field measurement, case study: Razan plain, IRAN. Technical Journal of Engineering and Applied Sciences, 3 (17), 2123, 2013.
  • 18. RAHMAN A., ROYTMAN L., KRAKAUER N.Y., NIZAMUDDIN M., GOLDBERG M. Use of vegetation health data for estimation of Aus rice yield in Bangladesh. Sensors, 9, 2968, 2009.
  • 19. REZAEI M., SHAHNAZARI A., RAEINISARJAZ M., VAZIFEDOUST M. Improving agricultural management in a large-scale paddy field by using remotely sensing data in the CERES-Rice model. Irrigation and drainage, 65, 224, 2016.
  • 20. TALPUR M.A., CHANGYING J.I., JUNEJO S.A., TAGAR A.A. Impact of rice crop on soil quality and fertility. Bulgarian Journal of Agricultural Science, 19 (6), 1287, 2013.
  • 21. SANCHEZ P.A. Tripling crop yields in tropical Africa. Nature Geo-Science, 3, 299, 2010.
  • 22. ZHANG H., CHEN H., ZHOU G. The model of wheat yield forecast based MODIS-NDVI (A case study of Xinxiang). XXII ISPRS Congress, 25 August – 01 September. Melbourne. Australia, 2012.
  • 23. ABOELGHAR M., ARAFAT S., ABO YOSEF M., El-SHIRBENY M., NAEEM S., MASSOUD A., SALEH N. Using SPOT data and leaf area index for rice yield estimation in Egyptian Nile delta. The Egyptian Journal of Remote Sensing and Space Sciences, 14, 81, 2010.
  • 24. AMIRI LARIJANI B., SARVESTANI Z.T., NEMATZADEH GH., MANSCHADI A.M., AMIRI E. Simulating phenology, growth and yield of transplanted rice at different seedling ages in Northern Iran using ORYZA2000. Rice Science, 18 (4), 321, 2011.
  • 25. PANDA S.S., AMES D.P., PANIGRAHI S. Application of vegetation indices for agricultural crop yield prediction using Neural network techniques. Remote Sensing, 2 (3), 673, 2010.
  • 26. CHOUDHURY B.J., AHMAD N.U., IDSO S.B., REGINATO R.J., DAUGHTRY C.S.T. Relations between evaporation coefficients and vegetation indices studied by model simulations. Remote Sensing of Environment, 50 (1), 1, 1994.
  • 27. ROUSE J.W., HAAS R.H., SCHELL J.A., DEERING D.W. Monitoring vegetation systems in the great plains with ERTS. 3rd ERTS Symposium, NASA SP-351, 1, 309, 1973.
  • 28. HUETE A.R. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25, 295, 1988.
  • 29. ALLEN R., WATERS R., TASUMI M., TREZZA R., BASTIAANSSEN W. SEBAL, Surface energy balance algorithms for land, Idaho Implementation. Advanced Training and User’s Manual, version 1.0, 2002.
  • 30. RICHARDSON A.J., EVERITT J.H. Using spectra vegetation indices to estimate rangeland productivity. Geocarto International, 7 (1), 63, 1992.
  • 31. JORDAN C.F. Derivation of leaf area index from quality of light on the forest floor. Ecology, 50, 663, 1969.
  • 32. EL NAHRY A.H., ALI R.R., EL BAROUDY A.A. An approach for precision farming under pivot irrigation system using remote sensing and GIS techniques. Journal of Agricultural Water Management, 98, 517, 2012.
  • 33. VIDHYA LAKSHMI S., JIJO J., SOUNDARIYA S., VISHALINI T., KASINATHAPANDIAN P. A comparison of soil texture distribution and soil moisture mapping of Chennai coast using landsat ETM+ and IKONOS data. Aquatic procedia, 4, 1452, 2015.
  • 34. TITTONELL P., SHEPHERD K.D., VANLAUWE B., GILLER K.E. Unravelling the effects of soil and crop management on maize productivity in smallholder agricultural systems of western Kenya-An application of classification and regression tree analysis. Agriculture, Ecosystems and Environment, 123, 137, 2008.
  • 35. AMAN M.N., BHATTI A.U. Comparison of regression models to predict potential yield of wheat from some measured soil properties. Pakistan Journal of Agricultural Sciences, 52 (1), 239, 2015.
  • 36. WIT A.J.W.D., DIEPEN C.A.V. Crop model data assimilation with the Ensemble Kalman filter for improving regional crop yield forecasts. Agricultural and Forest Meteorology, 146, 38, 2007.
  • 37. ZHONG S., MO Y., GUO G, ZENG H., JIN Z. Effect of continuous cropping on soil chemical properties and crop yield in banana Plantation. Journal of Agricultural Science and Technology, 16, 239, 2014.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.