PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 59 | 4 |

Tytuł artykułu

Mechanism of aniline degradation by yeast strain Candida methanosorbosa BP-6

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The ability of some bacteria and filamentous fungi to degrade aniline and its derivatives was reported earlier in the literature. However, there was no information about the biodegradation of aniline by yeast strains. The present work is focused on yeast strain Candida methanosorbosa BP-6 which was isolated from the wastewater pool of the old dye factory "Boruta" in Zgierz by enrichment technique and identified by standard microbiological methods. We have found that strain C. methanosorbosa BP-6 readily grows in the presence of aniline and can degrade this substrate. Relatively good separation of peaks corresponding to aniline and its biodegradation intermediates allowed us their identification and quantification by HPLC methodology. We have found that major intermediates of this degradation are: catechol, cis,CM-mucontc acid, muconolactone, 3-oxoadipate enol-lactone, 3-oxoadipic acid and succinic acid. Our results provide strong evidence that biodegradation of aniline by the yeast strain C. methanosorbosa BP-6 proceeds according to the intradiolic pathway.

Wydawca

-

Rocznik

Tom

59

Numer

4

Opis fizyczny

p.311-315,fig.,ref.

Twórcy

autor
  • Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Technical University of Lodz, Stefanowskiego 4/10, 90-924 Lodz, Poland
autor
  • Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Technical University of Lodz, Stefanowskiego 4/10, 90-924 Lodz, Poland
autor
  • Institute of General Food Chemistry, Technical University of Lodz, Lodz, Poland
autor
  • Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Technical University of Lodz, Stefanowskiego 4/10, 90-924 Lodz, Poland

Bibliografia

  • Agency for Toxic Substances and Disease Registry. Medical Management Guidelines: aniline, ATSDR, Atlanta, GA, 2009 (http://www. atsdr. cdc. gov).
  • Ahtiainen J., M. Aalto and P. Pessala. 2003. biodegradation of chemicals in a standardized test and in environmental conditions. Chemosphere 51: 529-537.
  • Aoki K., R. Shinke and H. Nishira. 1983. Metabolism of aniline by Rhodococcus erythropolis AN-13. Agric. Biol. Chem. 47: 1611-1616.
  • Aoki K., K. Ohtsuka and R. Shinke. 1984. Rapid biodegradation of aniline by Frauteria sp. ANA-18 and its metabolism. Agric. Biol. Chem. 48: 865-872.
  • Arjmand M. and H. Sandermann. 1985. Mineralization of chloroaniline/lignin conjugates and of free chloroanilines by the white rot fungus Phanerochaetc chrysosporium. J. Agric. Food. Chem. 33: 1055-1060.
  • Bachofer R., F. Lingens and W. Schafer. 1975. Conversion of aniline into pyrocatechol by a Norcardia sp.: incorporation ofoxygen-18. FEBS Lett. 50: 288-290.
  • Barnett J. A., R. W. Payne and D. Yarrow. 1984. Yeasts: characteristics and identification. Second Edition. Cambridge University Press. Cambridge, UK.
  • EC Joint Research Centre. Institute for Health and Consumer Protection, EU Risk Assessment Report: aniline. European Chemicals Bureau, Ispra, Italy, 2004 (http://ecp.jrc.ec.europa.eu).
  • Emtiazi G., M. Satarii and F. Mazaherion. 2001. The utilization of aniline, chlorinated aniline, and aniline blue as the only source of nitrogen by fungi in water. Water Res. 35: 1219-1224.
  • Fujii T., M. Takeo and Y. Maeda. 1997. Plasmid-encoded genes specifying aniline oxidation from Actinetobacter sp. strain YAA. Microbiology 143: 93-99.
  • Fukumori F. and C. P. Saint. 1997. Nucleotide sequences and regulational analysis of genes involved in conversion of aniline to catechol in Pseudomonas putida UCC22(pTDN1 ). J. Bacteriol. 179: 399-408.
  • Helm V. and H. Reber. 1979. Investigation on the regulation of aniline utilization in Pseudomonas multivorans strain An-1. Eur. J. Appl. Microbiol. Biotechnol. 1: 191-199.
  • Kanhg H. Y., J. J. Kukor and K. H. Oh. 2000. Characterization of strain HY99, a novel microorganism capable of aerobic and anaerobic degradation of aniline. FEMS Microbiol. Lett. 190: 215-222.
  • King E. O., M. K. Ward and D. E. Raney. 1954. Two simple media for the demonstration of pyocyanin and fluorescein., J. Lab. Clin. Med. 44: 301-307.
  • Kremer S. and O. Sterner. 1996. Metabolism of 3.4-dichloroaniline by the basidiomycete Filoboletus species TA9054.J. Agric. Food. Chem. 44: 1155-1159.
  • Liu Z., H. Yang, Z. Huang, P. Zhou and S. J. Liu. 2002. Degradation of aniline by newly isolated, extremely aniline-tolerant Delftia sp. AN3. Appl. Microbiol. Biotechnol. 58: 679-682.
  • Lyons C. D., S. Katz and R. Bartha. 1984. Mechanisms and pathways of aniline elimination from aquatic environments. Appl. Environ. Microbiol, 48: 491-496.
  • Matsumura E., M. Sakai, K. Hayashi, S. Murakami, S. Takenaka and K. Aoki. 2006. Constitutive expression of catABC genes in the aniline-assimilating bacterium Rhodo-coccus species AN-22: production, purification, characterization and gene analysis of CatA, CatB and CatC. Biochem. J. 393: 219-226.
  • MeClure N.C. and W.A. Venables. 1986. Adaptation of Pseudomonas putida mt-2 to growth on aromatic amines. J. Gen. Microbiol. 132: 2209-2218.
  • Nair P. and C.S. Vaidyanathan. 1964. A colorimetric method for determination of pyrocatechol and related substances. Anal. Biochem. 7: 315-321.
  • Surovtseva E.G. and A.I. Volnova. 1972. Aniline as the sole source of carbon, nitrogen and energy for Aicaligenes faecalis. Microbiology 49: 49-53.
  • Suye S., A. Ogawa, S. Yokoyama and A. Obayashi. 1990. Screening and identification of Candida methanosorbosa as alcohol oxidase-producing methanol using yeast. Agric. Biol. Chem. 54: 1297-1298.
  • Takeo M., T. Fujii, K. Takenaka and Y. Maeda. 1998. Cloning and sequencing of a gene for the meta-cleavage pathway of aniline degradation in Acinetobacter sp. strain YAA. 1998. J. Ferment. Bioeng. 85: 514-517.
  • Thomas S.M. and S.W. Peretti. 1998. Continents culture dynamics for aniline metabolism by Pseudomonas sp. CIT1. Biotechnol. Bioeng. 58: 1-12.
  • Toräng L., P. Reuschenbach, B. Müller and N. Nyholm. 2002. Laboratory shake flask batch test can predict field biodegradation of aniline in the Rhine. Chemosphere 49: 1257-1265.
  • US Environmental Protection Agency. OPPT Chemical Fact Sheets, Aniline Fact Sheet, Washington, DC, 1994 (http://www.epa.gov/chemfact).
  • Wang L., S. Barrington and J. W. Kim. 2007. Biodegradation of pentyl amine and aniline from petrochemical wastewater. J. Environ. Manage. 83: 191-197.
  • Zeyer J., A. Wasserfallen and K.N. Timmis. 1985. Microbial mineralization of ring-substituted anilines through an ortho-cleavage pathway. Appl. Environ. Microbiol. 50: 447-453.
  • Zissi U., G. Lyberatos and S. Pavlou. 1997. biodegradation of p-aminobenzene by Bacillus sublilis under aerobic conditions. J. Ind. Microbiol. Biotechnol. 19: 49-55.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-781bd42a-5c4b-4186-b2db-dd3868af2c75
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.