PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 77 | 4 |

Tytuł artykułu

Omitted Stimulus Potential depends on the sensory modality

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Determining the characteristics of Omitted Stimulus Potential (OSP) parameters using different sensory modalities is important because they reflect timing processes and have a substantial influence on time perception. At the same time, the central mechanisms of time perception associated with sensory processing can modulate cortical brain waves related to cognition. This experiment tested the relationship between parameters of the whole OSP brain wave when trains of auditory, visual or somatosensory stimuli were applied. Twenty healthy young college volunteers completed within‑subjects trials with sensory stimuli at a fixed frequency of 0.5 Hz that ceased unpredictably. These passive trials required no behavioural response and were administered to measure the complete set of OSP (i.e., the rate of rise, amplitude and peak latency). OSPs showed a faster rate of rise for auditory stimuli compared to visual or somatosensory stimuli. Auditory stimuli also produced a shorter time to peak and higher amplitude waves. No significant differences were obtained between visual and somatosensory waves. The results suggest that the brain handles interval timing and expectation with greater efficiency for the auditory system compared to other sensory modalities. This auditory supremacy is congruent with previous behavioural studies using missing stimulus tasks and could be useful for clinical purposes, for example, designing auditory‑based brain‑computer interfaces for patients with motor disabilities and visual impairment. The rate of rise is a dynamic measure that should be included in the ERPs analysis.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

77

Numer

4

Opis fizyczny

p.297-304,fig.,ref.

Twórcy

  • Centro de Investigaciones Biomedicas, Universidad Autonoma de Campeche, Colonia Buenavista, San Francisco de Campeche, Campeche, Mexico
  • Hospital General de Especialidades “Dr. Javier Buenfil Osorio”, San Francisco de Campeche, Campeche, Mexico
  • Facultad de Medicina, Universidad Autonoma de Campeche, Colonia Buenavista, San Francisco de Campeche, Campeche, Mexico

Bibliografia

  • Bullock TH, Karamürsel S, Achimowicz JZ, McClune MC, Başar‑Eroglu  C (1994) Dynamic properties of human visual evoked and omitted stimulus potentials. Electroencephalogr Clin Neurophysiol 91: 42–53.
  • Bullock TH (1997) Comparative physiology of acoustic and allied central analyzers. Acta Otolaryngol 532 (Suppl): 13–21.
  • Busse  L, Woldorff MG (2003) The ERP omitted stimulus response to “no‑stim” events and its implications for fast‑rate event‑related fMRI designs. NeuroImage 18: 856–864.
  • Church RM (1984) Properties of the internal clock. Ann NY Acad Sci 423: 566–582.
  • Church RM (1999) Evaluation of quantitative theories of timing. J Exp Anal Behav 71: 253–256. Coles MGH, Rugg MD (1995) Event‑related brain potentials: an introduction. In Rugg and Coles Eds. Electrophysiology of Mind: Event‑Related Brain Potentials and Cognition. Oxford Psychology Series 25. Oxford University Press. pp. 1–26.
  • Decker TN, Weber BA (1976) The effects of subject listening state on potentials associated with missing auditory stimuli. J Aud Res 16: 177–181.
  • Dreo J, Attia D, Pirtošek Z, Repovš G (2017) The P3 cognitive ERP has at least some sensory modality‑specific generators: Evidence from high‑resolution EEG. Psychophysiol 54: 416–428.
  • Droit‑Volet S, Meck WH, Penney TB (2007) Sensory modality and time perception in children and adults. Behav Proc 74: 244–250.
  • Erlbeck H, Mochty U, Kübler A, Real RGL (2017) Circadian course of the P300 ERP in patients with amyotrophic lateral sclerosis – implications for brain‑computer interfaces (BCI). BMC Neurology. 17: 3.
  • Grasso PA, Benassi  M, Làdavas E, Bertini C (2016) Audio‑visual mul‑ tisensory training enhances visual processing of motor stimuli in healthy participants: an electrophysiological study. Eur J Neurosci 44: 2748‑2758.
  • Hamon JF, Gauthier P, Gottesmann C (1989) Influence of instructions in multi‑discrimination experiments on event related potentials. Physiol Bohemoslov 38: 231–240.
  • Hernández OH, Vogel‑Sprott M (2008) The Omitted Stimulus Potential is related to the cognitive component of reaction time. Int J Neurosci 118: 173–183.
  • Hernández OH, Vogel‑Sprott M (2009) OSP parameters and the cognitive component of reaction time to a  missing stimulus: Linking brain and behavior. Brain Cogn 71: 141–146.
  • Hernández OH, Vogel‑Sprott M (2010a) Reaction time and brain waves in omitted stimulus tasks: a multisensory study. J Psychophysiol 24: 1–6.
  • Hernández OH, Vogel‑Sprott M (2010b) Alcohol slows the brain potential associated with cognitive reaction time to an omitted stimulus. J Stud Alcohol Drugs 71: 268–277.
  • Hernández OH, Huchin‑Ramirez TC, Vogel‑Sprott  M (2005) Behaviorally fractionated reaction time to an omitted stimulus: tests with visual, auditory and tactile stimuli. Percept Mot Skills 100: 1066–1080.
  • Hernández OH, García‑Martínez R, Monteón  V (2014) Alcohol effects on the P2 component of auditory evoked potentials. An Acad Bras Cienc 86: 437–449.
  • Hernández OH, García‑Martínez R, Monteón  V (2015) The relationship between parameters of long‑latency brain evoked potentials in a multisensory design. Clin EEG Neurosci 47: 260–265.
  • Hernández OH, Aguirre‑Manzo  L, Ye‑Ehuan F, García‑Martínez R, Maldonado‑Velázquez G (2016). P200 parameters in patients with diabetes mellitus type 2 (DM2). Gac Med Mex 152: 313–21.
  • Hughes HC, Darcey TM, Barkan HI, Williamson PD, Roberts DW, Aslin CH (2001) Responses of human auditory association cortex to the omission of an expected acoustic event. Neuroimage 13: 1073–1089.
  • Janata P (2001) Brain electrical activity evoked by mental formation of auditory expectations and images. Brain Topogr 13: 169–193.
  • Jongsma MLA, Eichele T, Quian‑Quiroga R, Jenks KM, Dasain P, Honing H, Van Rijn CM (2005) Expectancy effects on omission evoked potentials in musicians and non‑musicians. Psychophysiology 42: 191–201.
  • Jongsma MLA, Eichele T, Van Rijn CM, Coenen AML, Hugdahl K, Nordby H, Quian‑Quiroga R (2006) Tracking pattern learning with single‑trial event‑related potentials. Clin Neurophysiol 117: 1957–1973.
  • Jongsma MLA, Quian‑Quiroga R, Van Rijn CM (2004) Rhythmic training decreases latency‑jitter of omission evoked potentials (OEPs) in humans. Neurosci Lett 355: 189–192.
  • Karamürsel S, Bullock TH (2000) Human auditory fast and slow omitted stimulus potential and steady‑state responses. Int J  Neurosci 100: 1–20.
  • Nakano H, Rosario MAM, Oshima‑Takane Y, Pierce  L, Tate SG (2014) Electrophysiological response to omitted stimulus in sentence processing Hiroko. Neuroreport 25: 1169–1174.
  • Nijboer F, Furdea A, Gunst I, Mellinger J, McFarland DJ, Birbaumer N, Kubler A (2008) An auditory brain‑computer interface (BCI). J Neurosci Methods 167: 43–50.
  • Nittono H (2005) Missing‑stimulus potentials associated with a disruption of human‑computer interaction. Psychologia 48: 93–101.
  • Penney TB (2004) Electrophysiological correlates of interval timing in the Stop‑Reaction‑Time task. Cog Brain Res 21: 234‑249.
  • Penney TB, Gibbon J, Meck WH (2000) Differential effects of auditory and visual signals on clock speed and temporal memory. J Exp Psych Human Percept Perform 26: 1770–1787.
  • Polich J (2007) Updating P300: An integrative theory of P3a and P3b. Clin Neurophysiol 118: 2128–2148.
  • Polich J (2013) Overview of P3a and P3b. In J Polich (Ed). Detection of change: Event‑related potential and fMRI findings (pp. 83–98).
  • Boston, MA: Springer US. Pretch JC, Bullock TH (1994) Event‑related potentials to omitted visual stimuli in a reptile. Electroencephalogr Clin Neurophysiol 91: 54–66.
  • Prosser S, Arslan E, Michelini S (1981) Habituation and rate effect in the auditory cortical potentials evoked by trains of stimuli. Arch Otorhinolaryngol 233: 179–187.
  • Quian‑Quiroga R, Atienza M, Cantero JL, Jongsma MLA (2007) What we can learn from single‑trial event‑related potentials? Chaos and Complexity Letters. Hauppauge NY: Nova Science Publishers, Inc V.2 (2/3), p. 345‑363.
  • Ramon F, Hernández‑Falcón J, Bullock TH (2012) Brain electrical signals in unrestrained crayfish. In: Modern Approaches to the Study of Crustacea (Escobar‑Briones E, Alvarez F, Ed.). Springer Science & Business Media, p. 10–13.
  • Rousseau L, Rousseau R (1996) Stop‑reaction time and the internal clock. Percept Psychophysiol 58: 434–448.
  • Simson R, Vaughan HG, Ritter W (1976) The scalp topography of potentials associated with missing visual and auditory stimuli. Electroencephalogr Clin Neurophysiol 40: 33–42.
  • Stapleton JM, O’Reilly T, Halgren E (1987) Endogenous potentials evoked in simple cognitive tasks: scalp topography. Int J Neurosci 36: 75–87.
  • Sutton S, Braren M, Zubin J (1965) Evoked‑potential correlates of stimulus uncertainty. Science 150: 1187–1188.
  • Sutton S, Tueting P, Zubin J, John ER (1967) Information delivery and the sensory evoked potential. Science 155: 1436–1439.
  • Takasaka Y (1985) Expectancy‑related cerebral potentials associated with voluntary time estimation and omitted stimulus. Psychiatry Clin Neurosci 39: 167–172.
  • Tarkka IM, Stokic DS (1998) Source localization of P300 from oddball, single stimulus, and omitted‑stimulus paradigms. Brain Topogr 11: 141–151.
  • Wallace MT, Wilkinson LK, Stein BE (1996) Representation and integration of multiple sensory inputs in primate superior colliculus. J Neurophysiol 76: 1246–1266.
  • Wallace MT, Meredith MA, Stein BE (1998) Multisensory integration in the superior colliculus of the alert cat. J Neurophysiol 80: 1006–1010.
  • Wu Y, Li  M, Wang J (2016) Toward a  hybrid brain‑computer interface based on repetitive visual stimuli with missing events. J Neuro Eng Rehabil 13: 66.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-77a172c3-f427-4164-8fe1-9d4d6c3e14d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.