PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 22 | 4 |

Tytuł artykułu

Neurohormones: oxytocin, vasopressin and related peptides - structure, genes, receptors, and evolution

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Oxytocin (OT) and vasopressin (VP), and all related hormones, consist of nine amino acids with cysteine residues in positions 1 and 6 that form a six-amino acid cyclic part, and of a C-terminal glycine in α-amidated form. These neuropeptides are classified into oxytocin and vasopressin families based on the amino acid residue at position 8. OT-like and VP-like peptides are present in every vertebrate species. These peptides are a very ancient family of hormones having representatives in diverse species of invertebrates. Invertebrates have either a vasopressin-family peptide or an oxytocin-family peptide, whereas bony fishes, the ancestors of land vertebrates, have both isotocin and vasotocin. Presently, two evolutionary structural lineages have been proposed: an isotocin-mesotocin-OT line, associated with reproductive functions, and a vasotocin-VP line participating in water homeostasis. The ancestral gene encoding the precursor protein has been present in the animal genome for a period exceeding 500 million years of evolution. The exceptionally high stability of this structure of nine-amino acid peptides during the entire process of evolution suggests very powerful selective pressure, possibly by evolution together with respective receptors and specific processing enzymes. A novel gene with a distinct function and expression appeared during evolution through duplication of an ancestral gene. The synteny and order of genes in the neurohypophysial hormone gene locus are conserved in the lamprey, elephant shark, coelacanth, and tetrapods, but disrupted in teleost fishes presumably due to the rearrangements facilitated by a whole-genome duplication event in the teleost fish ancestor.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

22

Numer

4

Opis fizyczny

p.283-294,fig.,ref.

Twórcy

autor
  • The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jablonna, Poland

Bibliografia

  • Acher R., 1996. Molecular evolution of fish neurohypophysial hormones: neural and selective evolutionary mechanisms. Gen. Comp. Endocrinol. 102, 157−172
  • Acher R., Chauvet J., Chauvet M.T., 1995. Man and the chimaera. Selective versus neutral oxyticin evolution. Adv. Exp. Med. Biol. 395, 615−627
  • Antoni F.A., 1986. Oxytocin receptors in rat adenohypophysis: evidence from redioligand binding studies. Endocrninology 119, 2393−2395
  • Arima H., Kondo K., Kakiya S., Nagasaki H., Yokoi H., Yambe Y., Murase T., Iwasaki Y., Oiso Y., 1990. Rapid and sensitive vasopressin heteronuclear RNA responses to changes in plasma osmolality. J. Neuroendocrinol. 11, 337−341
  • Barberis C., Mounillac B., Durroux T., 1998. Structural bases of vasopressin/oxytocin receptor function. J. Endocrinol. 156, 223−229
  • Bargman W., 1966. Neurosecretion. Int. Rev. Cytol. 19, 183−201
  • Boersma C.J., Sonnemans M.A., Van Leeuwen F.W., 1993. Immunoelectron microscopic demonstration of oxytocin and vasopressin in pituicytes and in nerve terminals forming synaptoid contacts with pituicytes in the rat neural lobe. Brain Res. 611, 117−129
  • Bourque C.W., Oliet S.H., Richard D., 1994. Osmoreceptors, osmoreception, and osmoregulation. Front Neuroendocrinol. 15, 231−274
  • Brownstein M., Russel J., Gainer H., 1980. Synthesis, transport and release of posterior pituitary hormones. Science 207, 373−378
  • Burbach J.P.H., de Hoop M.J., Schmale H., Richter D., de Kloet E.R., Ten Haaf J.A., de Wied D., 1984. Differential responses to osmotic stress of vasopressin-neurophysin mRNA in hypothalamic nuclei. Neuroendocrinology 39, 582−584
  • Burkhardt T., Schwabe S., Morgenthaler N.G., Natalucci G., Zimmermann R., Wellmann S., 2012. Copeptin: a marker for stress reaction in fetuses with intrauterine restriction. Amer. J. Obstet. Ginecol. 207, 497, e1-5
  • Carter D.A., Murphy D., 1991. Nuclear mechanisms mediate rhythmic changes in vasopressin mRNA expression in the rat suprachiasmatic nucleus. Mol. Brain Res. 12, 315−321
  • Chaturvedi C.M., Zheng Z., Shimada K., Cornett L.E., Koike T.I., 1996. Changes in poly(A) tail length of arginine vasotocin messenger ribonucleic acid in the hypothalamus of water-deprived chickens. Gen. Comp. Endocrinol. 103, 316−322
  • Chauvet J., Hurpet D., Colne T., Michel G., Chauvet M.T., Acher R., 1985. Neurohypophysial hormones as evolutionary tracers: identification of oxytocin, lysine vasopressin, and argininr vasopressin in two South American opossums (Didelphis marsupialis and Philander opossum). Gen. Comp. Endocrinol. 57, 320−328
  • Christoffels A., Koh E.G., Chia J.M., Brenner S., Aparicio S., Venkatesh B., 2004. Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of rayfinned fishes. Mol. Biol. Evol. 21, 1146−1151
  • Cruz L.J., de Santos V., Zafaraila G.C., Ramilo C.A., Zeikus R., Gray W.R., Olivera B.M., 1987. Invertebrate vasopressin/oxytocin homologs. Characterization of peptides from Conus geographus and Conus straitus venoms. J. Biol. Chem. 262, 15821−15824
  • Davies J., Waller S., Zeng Q., Wells S., Murphy D., 2003. Further delineation of the sequence required for the expression and physiological regulation of the vasopressin gene in transgenic rat hypothalamic magnocellular neurones. J. Neuroendocrinol. 15, 42−50
  • de Bree F.M., Knight D., Murphy D., 2000. Sorting of the vasopressin prohormone into the regulated secretory pathway. FEBS Lett. 475, 175−180
  • Escriva H., Manzon L., Youson J., Laudet V., 2002. Analysis of lamprey and hagfish genes reveals a complex history og gene duplications during early vertebrate evolution. Mol. Biol. Evol. 19, 1440−11450
  • Fanelli F., Barbier P., Zanchetta D., De Bendetti P.G., Chini B., 1999. Activation mechanism of human oxytocin receptor : a combined study of experimental and computer-stimulated mutagenesis. Mol. Pharmacol. 56, 214−225
  • Fontana F., Congiu L., Mudrak V.A., Quattro J.M., Smith T.I., Ware K., Doroshov S.I., 2008. Evidence of hexaploid karyotype in shortnose sturgeon. Genome 51, 113−119
  • Gainer H., 1998. Cell-specific gene expression in oxytocin and vasopressin magnocellular neurons. Adv. Exp. Med. Biol. 449, 15−27
  • Gainer H., Fields R.L., House S.B., 2001. Vasopressin gene expression. Experimental models and strategies. Exp. Neurol. 171, 190−199
  • Gainer H., Wray S., 1994. Cellular and molecular biology of oxytocin and vasopressin. In: E. Knobil, J.D. Neil (Editors). Physiology of Reproduction, pp. 1099−1129
  • Gillies G.E., Linton E.A., Lowry P.J., 1982. Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin. Nature 299, 355−357
  • Gimpl G., Fahreholtz F., 2001. The oxytocin receptor system; structure function, and regulation. Physiol. Rev. 81, 629−683
  • Glasgow E., Kusano K., Chin H., Mezey E., Young W.S. III, Gainer H., 1999. Single cell reverse transcription-polymerase chain reaction analysis of rat supraoptic magnocellular neurons: neuropeptide phenotypes and high voltage-gated calcium channel subtypes. Endocrinology 140, 5391−5401
  • Gwee P.C., Amemiya C.T., Brenner S., Venkatesh B., 2008. Sequence and organization of coelacanth neurohypophysial hormone genes: evolutionary history of the vertebrate neurohypophysial hormone gene locus. BMC Evol. Biol. 8, 93; online at: http://www. biomedcentral.com/1471-2148/8/93
  • Gwee P.-C., Tray B.-H., Brenner S., Venkatesh B., 2009. Characterization of the neurohypophysial hormone gene loci in elephant shark and the Japanese lamprey: origin of vertebrate neurohypophysial hormone genes. BMC Evol. Biol. 9, 47; online at: http://www.biomedcentral. com/1471-2148/9/47
  • Herman J.P., Schafer M.K.-H., Watson S.J., Scherman T.G., 1991. In situ hybridisation analysis of arginine vasopressin gene transcription using intron specific probes. Mol. Endocrinol. 5, 1447−1456
  • Hoyle C.H., 1999. Neuropeptide families and their receptors: evolutionary perspectives. Brain Res. 848, 1−25
  • Huang W., Lee S.L., Amason S.S., Sjoquist M.,1996. Dehydration natriuresis in male rats is mediated by oxytocin. Amer. J. Physiol. 270, R427−R433
  • Huber D., Veinante P., Stoop R., 2005. Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science 308, 245–248
  • Inoue T., Kimura T., Azuma C., Inazawa J., Takemura M., Kikuchi T., Kubota Y., Ogita K., Saji F., 1994. Structural organization of the human oxytocin receptor gene. J. Biol. Chem. 269, 32451–32456
  • Ivell R., Walther N., Wehrenberg U., McArdle C., Ungefroren H., 1993. The regulation of neurohypophysial peptide gene expression in gonadal tissues. Regul. Peptides 45, 263–267
  • Jaillon O., Aury J.M., Brunet F., Petit J.L., Strange-Thomann N., Mauceli E., Bouneau L., Fisher C., Ozouf-Costaz C., Bernot A., et al., 2004. Genome duplication in the teleost fish Tetraodon nigriviridis reveals the early vertebrate proto-karyotype. Nature 431, 946−957
  • Jard S., Elands J., Schmidt A., Barberis C., 1988. Vasopressin and oxytocin receptors: an overview. In: H. Imura, K. Shizume (Editors). Progress in Endocrinology. Amsterdam, Elsevier, pp. 1183−1188
  • Kimura T., Makino Y., Saji F. et al., 1994. Molecular characterization of a cloned human oxytocin receptor. Eur. J. Endocrinol. 131, 385−390
  • Kubota Y., Kimura T., Hashimoto K., Tokugawa Y., Nobunaga K., Azuma C., Saji F., Murata Y., 1996. Structure and expression of the mouse oxytocin receptor gene. Mol. Cell Endocrinol. 124, 25–32
  • Larhammar D., Sundstrom G., Dreborg S., Daza D.O., Larsson T.A., 2009. Major genomic events and their consequences for vertebrate evolution and endocrinology. Trends Comp. Endocrinol. Neurobiol. 1163, 201−208
  • Levy A., Lightman S.L., Carter D.A., Murphy D., 1990. The origin and regulation of posterior pituitary vasopressin ribonucleic acid in osmotically stimulated rats. J. Neuroendocrinol. 3, 329−334
  • Ma X.M., Levy A., Lightman S.L., 1997. Emergence of an isolated arginine vasopressin (AVP) response to stress after repeated restraint: a study of both AVP and corticotropin-releasing hormone messenger ribonucleic acid (RNA) and heteronuclear RNA. Endocrinology 138, 4351−4357
  • Marc S., Leiber D., Harbon S., 1986. Carbachol and oxytocin stimulate the generation of inositol phosphates in guinea pig myometrium. FEBS Lett. 201, 9−10
  • Maciejewski-Lenoir D., Jirikowski G.F., Sanna P.P., Bloom F.E., 1993. Reduction of exogenous vasopressin RNA poly(A) tail length increases its effectiveness in transiently correcting diabetes insipidus in the Brattleboro rat. Proc. Nat. Acad. Sci. USA 90, 1435−1439
  • Małyszko J., Koc-Żórawska, Koźmiński P., Małyszko J.S., Żórawski M., Myśliwiec M., 2010. Copeptin in haemodialysed patients (in Polish). Nefrol. Dial. Pol. 14, 182–184
  • Michelini S., Urbanek M., Dean M., Goldman D., 1995. Polymorphism and genetic mapping of the human oxytocin receptor gene on chromosome 3. Amer. J. Med. Genet. 60, 183–187
  • Mirronneau J., 1976. Effects of oxytocin on ionic currents underlaying rhytm activity and and contraction in uterine smooth muscle. Pflüger’s Arch. 363, 113−116
  • Mohr E., Fehr S., Richter D., 1991. Axonal transport of neuropeptide encoding mRNAs within the hypothalamo-hypophyseal tract of rats. EMBO J. 10, 2419–2424
  • Moore R.Y., 1983. Organization and function of a central nervous system circadian oscillator: a suprachiasmatic hypothalamic nucleus. Fed. Proc. 42, 2783−2789
  • Murphy D., Ang H.L., Zeng Q., Ho M.Y., Funkhouser J., Carter D., 1992. Neuropeptide gene expression in transgenic animals. Prog. Brain Res. 92, 77−96
  • Murphy D., Carter D.A., 1990. Vasopressin gene expression in the rodent hypothalamus: transcriptional and pos-transcriptional responses to physiological stimulation. Mol. Endocrinol. 4, 1051−1059
  • Murphy D., Funkhouser J., Ang H.-L., Foo Ch., Carter D., 1993. Extrahypothalamic expression of the vasopressin and oxytocin genes. Ann. NY Acad. Sci. 689, 91−106
  • Murphy D., Levy A., Lightman S., Carter D., 1989. Vasopressin RNA in the neural lobe of the pituitary: dramatic accumulation in response to salt loading. Proc. Nat. Acad. Sci. USA 86, 9002−9005
  • Murphy D., Wells S., 2003. In vivo gene transfer studies on the regulation and function of the vasopressin and oxytocin genes. J. Neuroendocrinol. 15, 109−125
  • Oumi T., Ukena K., Matsushima O., Ikeda T., Fujita T., Minakata H., Nomoto K., 1996. Annetocin, an annelid oxytocin-related peptide, induces egg-laying behavior in the earthworm, Eisenia foetida. J. Exp. Zool. 276, 151−156
  • Pu L.P., Van Leeuwen F.W., Fracer H.L.T., Sonnemans M.A., Loh Y., 1995. Localization of vasopressin mRNA and immunoreactivity in pituicytes of pituitary stalk-transected rats after osmotic stimulation. Proc. Nat. Acad. Sci. USA 92,10653−10657
  • Putnam N.H., Butts T., Ferrier D.E., Furlong R.F., Hellsten U., KawashimaT., Robinson-Rechavi M., Shoguchi E., Terry A., Yu J.K., 2008. The amphioxus genome and the evolution of the chordate karyotype. Nature 453, 1064−1071
  • Ratty A.K., Jeong S.-W., Nagle J.W., Chin H., Gainer H., Murphy D., Venkatesh B., 1996. A systemic survey of the intergenic region between the murine oxytocin- and vasopressin encoding genes. Gene 174, 71−78
  • Ravi V., Venkatesh B., 2008. Rapidly evolving fish genomes and teleost diversity. Curr. Opin. Genet. Develop. 18, 544−550
  • Reich G., 1992. A new peptide of the oxytocin/vasopressin family isolated from nerves of the cephalopod Octopus vulgaris. Neurosci. Lett. 134,191−194
  • Reeves W.B., Andreoli T.E., 1992. The posterior pituitary and water metabolism. In: I.D. Wilson, D.W. Foster (Editors). Williams Textbook of Endocrinology. Philadelphia, WB Saunders, pp. 311−256
  • Rouille Y., Chauvet M.T., Chauvet J., Acher R., 1988. Dual duplication of neurohypophysial hormones in an Australian marsupial: mesotocin, oxytocin, lysine vasopressin and arginine vasopressin in a single gland of northern bandicoot (Isoodon macrourous). Biochem. Biophys. Res. Commun. 154, 346−350
  • Rozen F., Russo C., Banville D., Zingg H.H., 1995. Structure, characterization, and expression of the rat oxytocin receptor gene. Proc. Nat. Acad. Sci. USA 92, 200–204
  • Russell J.A., Leng G., 1998. Sex, parturition and motherhood without oxytocin. J. Endocrinol. 57, 343−359
  • Savarese T., Fraser C., 1992. In vitro mutagenesis and the search for structure-function relationships among G protein-coupled receptors. Biochem. J. 283, 1−19
  • Schmitz E., Mohr E., Ricgter D., 1991. Rat vasopressin and oxytocin genes are linked by long interspersed repeated DNA element (LINE), sequence and transcriptional analysis of LINE. DNA Cell Biol. 10, 81−91
  • Simmons Jr. Ch., Clancy T.E., Quan R., Knoll J.H., 1995. The oxytocin receptor gene (OXTR) localizes to human chromosome 3p25 by fluorescence in situ hybridization and PCR analysis of somatic cell hybrids. Genomics 26, 623–625
  • Stadler P.F., Fried C., Prohaska S.J., Bailey W.J., Misof B.Y., Ruddle F.H., Wagner G.P., 2004. Evidence for independent Hox gene duplications in the hagfish lineage; a PCR-based gene inventory of Eptatretus stoutii. Mol. Phylogenet. Evol. 32, 686−694
  • Takuwa-Kuroda K., Iwakoshi-Ukena E., Kanda A., Minakata H., 2003. Octopus, which owns the most advanced brain in invertebrates, has two members of vasopressin/oxytocin superfamily as in vertebrates. Regul. Peptides 115, 139−149
  • Telgmann R., Bathgate R.A., Jaeger S., Tillmann G., Ivell R., 2003. Transcriptional regulation of the bovine oxytocin receptor gene. Biol. Reprod. 68, 1015−1026
  • Trembleau A., Morales M., Bloom F.E., 1994. Aggregation of vasopressin mRNA in a subset of axonal swellings of the median eminence and posterior pituitary: light and electron microscopic evidence. J. Neurosci. 14, 39−53
  • Trembleau A., Morales M., Bloom F.E., 1996. Differential compartmentalization of vasopressin messenger RNA and neuropeptide within the rat hypothalamo-neurohypophysial axonal tracts: light and electron microscopic evidence. Neuroscience 70, 113−125
  • Vandesande F., Dierickx K., De Mey J., 1977. The origin of the vasopressinergic and oxytocinergic fibers of the external region of the median eminence of the rat hypophysis. Cell Tissue Res. 180, 443−452
  • Van Tol H.H., Bolwerk E.L., Liu B., Burbach J.P., 1988. Oxytocin and vasopressin gene expression in the hypothalamo- neurohypophyseal system of the rat during the estrus cycle, pregnancy, and lactation. Endocrinology 122, 985−951
  • Verbalis J.G., Magnione M.P., Stricker E.M., 1991. Oxytocin produces natriuresis in male rats at physiological plasma concentrations. Endocrinology 128, 1317−1322
  • Xi D., Kusano K., Gainer H., 1999. Quantitative analysis of oxytocin and vasopressin messenger ribonucleic acids in single magnocellular neurons isolated from supraoptic nucleus of rat hypothalamus. Endocrinology 140, 4677−4682
  • Zingg H.H., Lefebvre D., Almazan G., 1986. Regulation of vasopressin gene expression in hypothalamic neurons. J. Biol. Chem. 261, 12956−12959

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-77572e20-62a8-42e2-b126-654dfbcf8e10
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.