PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 68 | 1 |

Tytuł artykułu

Production and application of lysozyme-gum Arabic conjugate in mayonnaise as a natural preservative and emulsifier

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Nowadays demand for food products made by natural sources is rising so fast. In this work Lysozyme (Lyz) was conjugated with gum Arabic (GA) in order to be applied in mayonnaise, at which the presence of both preservative and emulsifi er is essential. Interestingly, the Lyz-GA conjugate exhibited improved functional properties and antibacterial activity. In order to approve the results of this study, the Lyz-GA conjugate was applied to mayonnaise as a natural preservative and emulsifi er. Application of the Lzy-GA conjugate in mayonnaise expedited the death rate of both S. aureus and E. coli K-12. The observation proved that conjugations of Lyz with GA increased the spectrum of its application in food products with improved antibacterial activity. Surprisingly, investigation of emulsion stability and rheological properties confi rmed the improved emulsifi cation role of Lyz-GA conjugate with a higher elasticity in the mayonnaise. Mayonnaise including conjugates showed a linear rheological response and shear-thinning behavior. Sensory analysis of the mayonnaise with Lyz-GA conjugate was completely consistent with the commercial one. Taken together, our results suggest that conjugation of Lyz with GA made possible the application of a natural preservative and emulsifi er in food and pharmaceutical industries, whereas Lyz alone does not have a broad-spectrum antibacterial activity or emulsifying properties

Wydawca

-

Rocznik

Tom

68

Numer

1

Opis fizyczny

p.33-43,fig.,ref.

Twórcy

autor
  • Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
autor
  • Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 71345, Iran
  • Department of Biochemistry, School of Veterinary Medicine, Shiraz University, Shiraz 71345, Iran
  • Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
autor
  • Department of Materials Science and Technology, University of Crete, 71110 Heraklion, Greece
autor
  • Department of Biochemistry, School of Veterinary Medicine, Shiraz University, Shiraz 71345, Iran
  • Department of Food Hygiene, School of Veterinary Medicine, Shiraz University, Shiraz 71345, Iran
  • Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, 7, West Arghavan St., Farahzadi Blvd., Tehran, Iran

Bibliografia

  • 1. Aminlari L., Hashe mi M.M., Aminlari M., Modifi ed lysozymes as novel broad spectrum natural antimicrobial agents in foods. J. Food Sci., 2014, 79, R1077–1090.
  • 2. Aminlari M., Rame zani R., Jadidi F., Effect of Maillard–based conjugation with dextran on the functional properties of lysozyme and casein. J. Sci. Food Agr., 2005, 85, 2617–2624.
  • 3. Amiri S., Ramezani R., Aminlari M., Antibacterial activity of dextran-conjugated lysozyme against Escherichia coli and Staphylococcus aureus in cheese curd. J. Food Prot., 2008, 71, 411–415.
  • 4. Arabshahi-D S., Dev i D.V., Urooj A., Evaluation of antioxidant activity of some plant extracts and their heat, pH and storage stability. Food Chem., 2007, 100, 1100–1105.
  • 5. Babiker E.E., Effe ct of chitosan conjugation on the functional properties and bactericidal activity of gluten peptides. Food Chem., 2002, 79, 3, 367–372.
  • 6. Ballesta P., Koumak is N., Besseling R., Poon W.C., Petekidis G., Slip of gels in colloid–polymer mixtures under shear. Soft Matter, 2013, 9, 12, 3237–3245.
  • 7. Benucci I., Cappann ella E., Liburdi K., Esti M., Inhibitory effect of ethanol, sulphur dioxide and proanthocyanidinic tannins on lysozyme antimicrobial activity in model wine. LWT – Food Sci Technol., 2016, 73, 320–325.
  • 8. Chevalier F., Chobert J. M., Popineau Y., Georgette M., Haertle N., Haertle T., Improvement of functional properties of β-lactoglobulin glycated through the Maillard reaction is related to the nature of the sugar. Int. Dairy J., 2001, 11, 145–152.
  • 9. deWit J.N., Klarenb eek G., Effects of various heat treatments on structure and solubility of whey proteins. J. Dairy Sci., 1984, 67, 11, 2701–2710.
  • 10. Dickinson E., Hydro colloids at interfaces and the infl uence on the properties of dispersed systems. Food Hydrocoll., 2003, 17, 1, 25–39.
  • 11. Diftis N., Kiosseog lou V., Improvement of emulsifying properties of soybean protein isolate by conjugation with carboxymethyl cellulose. Food Chem., 2003, 81, 1, 1–6.
  • 12. Espinosa-Andrews H. , Sandoval-Castilla O., Vazquez-Torres H., Jaime Vernon-Carter E., Lobato-Calleros C., Determination of the gum Arabic-chitosan interactions by Fourier Transform Infrared Spectroscopy and characterization of the microstructure and rheological features of their coacervates. Carbohydr. Polym., 2010, 79, 3, 541–546.
  • 13. Evans M., RatcliffeI., Williams P.A., Emulsion stabilisation using polysaccharide–protein complexes. Curr. Opin. Colloid., 2013, 18, 4, 272–282.
  • 14. Fialová J., Chumcha lová J., Miková K., Hrůšová I., Effect of food preservatives on the growth of spoilage lactobacilli isolated from mayonnaise-based sauces. Food Contr., 2008, 19, 7, 706–713.
  • 15. Flanagan J., Singh H., Conjugation of sodium caseinate and gum arabic catalyzed by transglutaminase. J. Agric. Food. Chem., 2006, 54, 19, 7305–7310.
  • 16. Garti N., Leser M.E., Emulsification properties of hydrocolloids. Polymer. Adv. Tech., 2001, 12, 1–2, 123–135.
  • 17. Goshawk J., Binding D., Rheolo gical phenomena occurring during the shearing flow of mayonnaise. J. Rheol., 1998, 42, 1537–1553.
  • 18. Hashemi M.M., Aminlari M., Moo savinasab M., Preparation of and studies on the functional properties and bactericidal activity of the lysozyme–xanthan gum conjugate. LWT – Food Sci Technol., 2014, 57, 2, 594–602.
  • 19. Jiménez-Castaño L., Villamiel M., López-Fandiño R., Glycosylation of individual whey proteins by Maillard reaction using dextran of different molecular mass. Food Hydrocoll., 2007, 21, 3, 433–443.
  • 20. Juszczak L., Fortuna T., Kośla A.,Sensory and rheological properties of Polish commercial mayonnaise. Food/Nahrung, 2003, 47, 4, 232–235.
  • 21. Kotlar C.E., Ponce A.G., Roura S.I. , Improvement of functional and antimicrobial properties of brewery byproduct hydrolysed enzymatically. LWT – Food Sci Technol., 2013, 50, 2, 378–385.
  • 22. Krstonošić V., Dokić L., Dokić P., Dapčević T., Effects of xanthan gum on physicochemical properties and stability of corn oil-in-water emulsions stabilized by polyoxyethylene (20) sorbitan monooleate. Food Hydrocoll., 2009, 23, 8, 2212–2218.
  • 23. Laca A., Sáenz M.C., Paredes B., Díaz M., Rheological properties, stability and sensory evaluation of low-cholesterol mayonnaises prepared using egg yolk granules as emulsifying agent. J. Food Eng., 2010, 97, 2, 243–252.
  • 24. Laemmli U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage. T4. Nature, 1970, 227, 680–685.
  • 25. Leuschner R.G., Boughtflower M.P., Standardized laboratoryscale preparation of mayonnaise containing low levels of it Salmonella enterica serovar Enteritidis. J. Food Protect., 2001, 64, 623–629.
  • 26. Liu H., Xu X.M., Guo S.D., Rheological, textur e and sensory properties of low-fat mayonnaise with different fat mimetics. LWT – Food Sci Technol., 2007, 40, 6, 946–954.
  • 27. Ma L., Barbosa-Cánovas G.V., Rheological characterization of mayonnaise. Part II: Flow and viscoelastic properties at different oil and xanthan gum concentrations. J. Food Eng., 1995, 25, 409–425.
  • 28. Mandala I.G., Savvas T.P., Kostaropoulos A.E., Xanthan and locust bean gum influence on the rheology and structure of a white model-sauce. J. Food Eng., 2004, 64, 3, 335–342.
  • 29. McClements D.J., Food emulsions, principles, practice and technique. 1999, CRC Press Inc., Boca Raton, Florida, pp. 411–415.
  • 30. Miralles B., Martínez-Rodríguez A., Santiago A.,van de Lagemaat J., Heras A., The occurrence of a Maillard-type proteinpolysaccharide reaction between β-lactoglobulin and chitosan. Food Chem., 2007, 100, 3, 1071–1075.
  • 31. Morales F.J., Jiménez-Pérez S., Free radical scaven ging capacity of Maillard reaction products as related to colour and fluorescence. Food Chem., 2001, 72, 1, 119–125.
  • 32. Mu L., Zhao H., Zhao M., Cui C., Liu L., Physicochemical properties of soy protein isolates-acacia gum conjugates. Czech J. Food Sci., 2011, 29, 2, 129–136.
  • 33. Mun S., Kim Y.L., Kang C.G., Park K.H., Shim J.Y., Ki m, Y.R., Development of reduced-fat mayonnaise using 4αGTase -modified rice starch and xanthan gum. Int. J. Biol. Macromol., 2009, 44, 5, 400–407.
  • 34. Nakamura S., Kato A., Kobayashi K., New antimicrobial characteristics of lysozyme-dextran conjugate. J. Agric. Food. Chem., 1991, 39, 4, 647–650.
  • 35. Nichols P.D., Henson M.J., Guckert J.B., Nivens D.E., White D.C., Fourier transform-infrared spectroscopic methods for microbial ecology: analysis of bacteria, bacteri-polymer mixtures and biofi lms. J. Microbiol. Methods., 1985, 4, 2, 79–94.
  • 36. Phillips G.O., Williams P.A., Handbook of Hydrocolloids(1st ed.). 2000, Woodhead P ublishing Limited, Cambridge, UK, pp. 252–270.
  • 37. Pons M., Galotto M. J., Subirats S., Comparison of the steady rheological characterization of normal and light mayonnaises. Food Hydrocoll., 1994, 8, 3–4, 389–400.
  • 38. Sadahira M.S., Rodrigues M.I., Akhtar M., Murray B.S.,Netto F.M., Effect of egg white protein-pectin electrostatic interactions in a high sugar content system on foaming and foam rheological properties. Food Hydrocoll., 2016, 58, 1–10.
  • 39. Scaman C., Nakai S., Aminlari M., Effect of pH, temperature and sodium bisulfi te or cysteine on the level of Maillard-based conjugation of lysozyme with dextran, galactomannan and mannan. Food Chem., 2006, 99, 2, 368–380.
  • 40. Schmitt C., Bovay C., Frossard P., Kinetics of formation and functional properties of conjugates prepared by dry-state incubation of β-lactoglobulin/acacia gum electrostatic complexes. J. Agric. Food. Chem., 2005, 53, 23, 9089–9099.
  • 41. Song Y., Babiker E.E., Usui M., Saito A., Kato A., Emulsifying properties and bactericidal action of chitosan–lysozyme conjugates. Food Res. Int., 2002, 35, 5, 459–466.
  • 42. Wo rrasinchai S., Suphantharika M., Pinjai S., Jamnong P., β-Glucan prepared from spent brewer’s yeast as a fat replacer in mayonnaise. Food Hydrocoll., 2006, 20, 1, 68–78.
  • 43. Xio ng R., Xie G., Edmondson A.S., Modelling the pH of mayonnaise by the ratio of egg to vinegar. Food Contr., 2000, 11, 1, 49–56.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-77394fcd-ccc9-45ad-bcb8-9c913e786e4f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.