PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 6 |

Tytuł artykułu

Toxic effects of anatase titanium dioxide nanoparticles on spermatogenesis and testicles in male mice

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Anatase TiO₂ nanoparticles (NPs) are widely used in food products, capsules, toothpaste, and so on, so the kinds of NPs directly get in touch with human bodies. The potential effect of this kind of material on reproduction must be considered with the increase in infertility. Sixty ICR male mice were intragastrically treated with dosages of 0, 10, 50, and 100 mg kg⁻¹ body weight (BW) anatase TiO₂ NPs to investigate the male reproductive toxicity of the NPs. Sperm quality, morphological changes in mice testes, and oxidative damage indexes were investigated in this study. Results showed that anatase TiO₂ NPs could lead to sperm malformation and increased rate of sperm cell micronucleus. These NPs also reduced the germ cell number and led to spherospermia, interstitial glands vacuole, malalignment, and vacuolization of spermatogenic cells in mice testes. Testicular cells accumulated reactive oxygen species when the mice were intragastrically administrated with TiO₂ NPs. Superoxide dismutase activity decreased, and the malondialdehyde content increased in the TiO₂ NP-treated groups. Anatase TiO₂ NPs exerted potential toxic effects on male reproduction, so the widespread application of this kind of NP in food products needs to be regulated.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

6

Opis fizyczny

p.2739-2745,fig.,ref.

Twórcy

autor
  • Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi 832002, Xinjiang, China
autor
  • Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi 832002, Xinjiang, China
autor
  • Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi 832002, Xinjiang, China
autor
  • Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi 832002, Xinjiang, China
autor
  • Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi 832002, Xinjiang, China
autor
  • Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi 832002, Xinjiang, China
autor
  • Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi 832002, Xinjiang, China
autor
  • Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi 832002, Xinjiang, China
autor
  • Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi 832002, Xinjiang, China
autor
  • Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi 832002, Xinjiang, China

Bibliografia

  • 1. RIU J., MAROTO A., RIU F.X. Nanosensors in environmental analysis. Talanta, 69 (2), 288, 2006.
  • 2. RUTH-MAGAYE J.Z., LINDA B., MIN D. Genotoxicity and carcinogenicity of cobalt-, nickel- and copper-based nanoparticles (Review). Exp. Ther. Med., 4 (4), 551, 2012.
  • 3. SHI H., MAGAYE R., CASTRANOVA V., ZHAO J. Titanium dioxide nanoparticles: a review of current toxicological data. Part. Fibre. Toxicol., 10 (2), 1, 2013.
  • 4. JIA F., SUN Z., YAN X.Y., ZHOU B.R., WANG J.D. Effect of pubertal nano‑TiO₂ exposure on testosterone synthesis and spermatogenesis in mice. Arch. Toxicol., 88 (3),781, 2013.
  • 5. ESTERKIN C.R., NEGRO A.C., ALFANO O.M., CASSANO A.E. Air pollution remediation in a fixed bed photocatalytic reactor coated with TiO₂. Aiche. J., 51 (51), 2298, 2005.
  • 6. FUJISHIMA A., ZHANG X., TRYK D.A. TiO₂ photocatalysis and related surface phenomena. Surf. Sci. Rep., 63 (12), 515, 2005.
  • 7. ZHEN S., QIAN Q., JIA G., ZHANG J., CHEN C., WEI Y. A panel study for cardiopulmonary effects produced by occupational exposure to inhalable titanium dioxide. J. Occup. Environ. Med., 54 (11),1389, 2012.
  • 8. KAKINOK K., YAMANE K., TERAOKA R., OTSUKA M., MATSUDA Y. Effect of relative humidity on the photocatalytic activity of titanium dioxide and photostability of famotidine. J. Pharm. Sci., 93 (3), 582, 2004.
  • 9. TAKEDA K., SUZUKI K.I., ISHIHARA A., Kubo-Irie M., FUJIMOTO R., TABATA M., OSHIO S., NIHEN Y., IHARA T., SUGAMATA M. Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve systems. J. Health Sci., 55 (1), 95, 2009.
  • 10. WANG J., ZHOU G., CHEN C., YU H., WANG T., MA Y., JIA G., GAO Y., LI B., SUN J., LI Y., JIAO F., ZHAO Y., CHAI Z. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol. Lett., 168 (2),176, 2007.
  • 11. SONG B., LIU J., FENG X., WEI L., SHAO L. A review on potential neurotoxicity of titanium dioxide nanoparticles. Nanoscale Res. Lett., 10 (1), 1, 2015.
  • 12. GERAETS L., OOMEN A.G., KRYSTEK P., JACOBSEN N.R., WALLIN H., LAURENTIE M., VERHAREN H.W., BRANDON E.F.A., DE JONG W.H. Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats. Part. Fibre. Toxicol., 11 (1), 30, 2014.
  • 13. GAO G., ZE Y., ZHAO X., SANG X., ZHENG L., ZE X., GUI S., SHENG L., SUN Q., HONG J., YU X., WANG L., HONG F., ZHANG X. Titanium dioxide nanoparticle-induced testicular damage, spermatogenesis suppression, and gene expression alterations in male mice. J. Hazard Mater., 258-259 (16),133, 2013.
  • 14. KOMATSU T., TABATA M., KUBO-IRIE M., SHIMIZU T., SUZUKI K.I., NIHEI Y., TAKEDA K. The effects of nanoparticles on mouse testis Leydig cells in vitro. Toxicol. in vitro, 22 (8), 1825, 2008.
  • 15. MEENA R., KAJAL K., PAULRAJ R. Cytotoxic and genotoxic effects of titanium dioxide nanoparticles in testicular cells of male wistar rat. Appl. Biochem. Biotechnol., 175 (2), 825, 2015.
  • 16. SONG G.L., GAO Y., WU H., HOU W.H., ZHANG C.Y., Ma H.Q. Physiological effect of anatase TiO₂ nanoparticles on lemina minor, Environ. Toxicol. Chem., 31 (9), 2147, 2012.
  • 17. NAHAS S., HONDT H.A., ABDOU H.A. Chromosome aberrations in spermatogonia and sperm abnormalities in curacron-treated mice. Mutat. Res., 222 (4),409, 1989.
  • 18. OKAMIJIMAk A.I., KAMIJIMA M., SHIBATA E., OHTANI K., TAKAGI K., UEYAMA J., WATANABE Y., OMURA M., WANG H.L., ICHIHARA G., KONDO T., NAKAJIMA T. A comprehensive evaluation of the testicular toxicity of dichlorvos in wistar rats. Toxicology, 213 (1-2), 129, 2005.
  • 19. YAN J., AGRESTI M., BRUCE T., YAN Y., GRANLUND A., MATLOUB H. Effects of cellularphone emissions on sperm motility in rats, Fertil. Steril., 88 (4), 957, 2007.
  • 20. BANCROFT D., STEVENS A., TURMER R. Theory and practice of histological technique, 4th ed. Churchill Living Stone, Edinburgh, 36-42, 1996.
  • 21. MEKHAMER W.K. The colloidal stability of raw bentonite deformed mechanically by ultrasound. J. Saudi Chem. Soc., 14 (3), 301, 2010.
  • 22. ANDERSSON P.O., LEJON C., EKSTRAND-HAMMARSTROM B., AKFUR C., AHLINDER L., BUCHT A. Osterlund L. Polymorph- and Size-Dependent Uptake and Toxicity of TiO₂ Nanoparticles in Living Lung Epithelial Cells. Small, 7 (4), 514, 2011.
  • 23. WANG C., LI Y. Interaction and nanotoxic effect of TiO₂ nanoparticle on fibrinogen by multi-spectroscopic method. Sci. Total Environ., 429 (429), 156, 2012.
  • 24. ORAZIZADEH M., KHORSANDI L., ABSALAN F., HASHEMITABAR M., DANESHI E. Effect of beta-carotene on titanium oxide nanoparticles-induced testicular toxicity in mice. J. Assist. Reprod. Genet., 31 (5), 1, 2014.
  • 25. PEJIC´ S. Antioxidant enzymes and lipid peroxidation in endometrium of patients with polyps, myoma, hyperplasia and adenocarcinoma. Reprod. Biol. Endocrinol., 7 (1), 1, 2009.
  • 26. JALALI-E-EMAM S.M.S., ALIZADEH B., ZAEFIZADEH M., ZAKARYA R.A., KHAYATNEZHAD M. Superoxide dismutase (SOD) activity in NaCl stress in salt-sensitive and salt-tolerance genotypes of Colza (Brassica napus L.). Middle East J. Sci. Res., 7 (1), 7, 2011.
  • 27. WANG H.F., ZHONG X.H., SHI W.Y., GUO B. Study of malondialdehyde (MDA) content, superoxide dismutase (SOD) and glutathione peroxidase (GSHPx) activities in chickens infected with avian infectious bronchitis virus. Afr. J. Biotechnol., 10 (45), 9213, 2011.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-76f8c90b-968e-4d56-9ed2-dddc9cb93762
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.