PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 24 | 3 |

Tytuł artykułu

Recovery of zinc from metallurgic waste sludges

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Zinc-bearing sludge deposits resulting from metallurgical zinc production have been investigated. They were found to contain 11.0-13.0% of zinc, 1.4-1.5% of copper, 1.1-1.3% of arsenic, and ca 1% of lead, plus small amounts of cadmium and nickel (0.5 and 0.1%, respectively). The results of the leaching of these deposits with hydrochloric, sulfuric, and lactic acids, as well as with ammonia and NaOH, are presented. The composition of the leachates was dependent on the leaching reagent used. The effectiveness of leaching decreased in the following order of the reagents used: ammonia (10.5%), HNO₃ and NaOH (10.0% each), H₂SO₄ (9.5%), HCl (9.0%), and lactic acid (8.0%). Due to the poor selectivity of the strong mineral acids used, the most effective leaching reagents were concentrated ammonia, NaOH, and lactic acid. The recovery of zinc using electrolysis and solvent extraction also was evaluated. As much as 92.0-99.0% of zinc was deposited on the cathode for a sulfuric acid solution having a pH in the range 1-2. The extractants used in the extraction process were a 60% TBP solution in toluene for acidic solutions and 1-decyl-2-methylimidazole for weakly acidic and weakly alkaline solutions. From a solution having a pH of around 2.7, Zn(II) ions were most effectively extracted (99.0%), whereas from those of a pH>4, also Cu(II) and Cd(II) (98.5 and 96.0%, respectively) ions were co-extracted along with Zn(II). The Ni(II) ions were most effectively extracted at a pH around 5.5 (74.0%). From solutions left after leaching with NaOH, 1-decyl-2-methylimidazole extracted mostly Zn(II) and Cu(II), whereas from those left after leaching with ammonia, Cd(II) could be extracted in addition to Zn(II) and Cu(II). An optimum pH for zinc recovery was 7.5-8.0.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

24

Numer

3

Opis fizyczny

p.1277-1282,fig.,ref.

Twórcy

  • Department of Inorganic Chemistry, Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
autor
  • Department of Inorganic Chemistry, Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
autor
  • Department of Inorganic Chemistry, Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland

Bibliografia

  • 1. CHOLEWA E., LUTZE R., KWIATKOWSKI L., OKUROWSKI W. Electrolytic zinc alloy coating – development and application. Inżynieria Powierzchni, Wyd. Instytut Mechaniki Precyzyjnej, Warszawa, 2007 [In Polish].
  • 2. MILEWSKI W., KOBUS J. Sample analysis of the operating costs of anti-corrosion coatings. Inżynieria Powierzchni, Wyd. Instytut Mechaniki Precyzyjnej, Warszawa, 2010 [In Polish].
  • 3. Prices according to the London Metal Exchange quotations: http//www.infomine.com/investment/metal-prices/zinc/5-year/
  • 4. KUCHARSKI M. Non-ferrous metal recycling. Kraków 2010 [In Polish].
  • 5. DE SOUZA A.D., PINA P.S., LEÃO V.A. Bioleaching and chemical leaching as an integrated process in the zinc industry. Min. Eng. 20, 591, 2007.
  • 6. RADZYMINSKA-LENARCIK E., URBANIAK W. The use of liquid-liquid extraction in the concentration and recovery of metals from waste. Municipal Waste Management, Wyd. Politechniki Koszalińskiej, IX, 2013.
  • 7. SZYCZEWSKI P., SIEPAK J., NIEDZIELSKI P., SOBCZYŃSKI T. Research on heavy metals in Poland. Pol. J. Environ. Stud. 18, 755, 2009.
  • 8. XU H., WEI CH., LI C., FAN G., DENG Z., ZHOU X., QIU S. Leaching of a complex sulfidic, silicate-containing zinc ore in sulfuric acid solution under oxygen pressure. Sep. Purif. Technol. 85, 206, 2012.
  • 9. RADZYMINSKA-LENARCIK E., URBANIAK W. Studies on leaching of sludge arising in copper production in order to recover zinc. Municipal Waste Management, Wyd. Politechniki Koszalińskiej, vol. X, 2014.
  • 10. DEEPA A., DE CARVALHO J.M.R. Review on the recent developments in the solvent extraction of zinc. Solv.Ext. Ion Exch. 26, 375, 2008.
  • 11. KUJAWSKI W., BOGACKI M. Molecular dynamics study of the behaviour of TBP-zinc-chloride complex at the chloroform/water interfacial system. Sep. Sci. Technol. 47, 1285, 2012.
  • 12. HAGHSHENAS FATMEHSARIA D., DARVISHIB D., ETEMADIC S., EIVAZI HOLLAGHB A.R., KESHAVARZ ALAMDARIA E., SALARDINIB A.A. Interaction between TBP and D2EHPA during Zn, Cd, Mn, Cu, Co and Ni solvent extraction. Hydrometallurgy 98, (1-2), 143, 2009.
  • 13. SARANGI K., PARHI P.K., PADHAN E., PALAI A.K., NATHSARMA K.C., PARK K.H. Separation of iron(III), copper(II) and zinc(II) from a mixed sulphate/chloride solution using TBP, LIX 84I and Cyanex 923. Sep. Purif. Technol. 55, 44, 2007.
  • 14. GHARABAGHI M., IRANNAJAD M., AZADMEHR A.R. Separation of nickel and zinc ions in a synthetic acidic solution by solvent extraction using D2EHPA and Cyanex 272. Physicochem. Probl. Miner. Process. 49, 233, 2013.
  • 15. REGEL-ROSOCKA M., NOWAK L., WISNIEWSKI M. Removal of zinc(II) and iron ions from chloride solutions with phosphonium ionic liquids. Sep. Purif. Technol. 97, 158, 2012.
  • 16. REGEL-ROSOCKA M., WISNIEWSKI M. Selective removal of zinc(II) from spent pickling solutions in the presence of iron ions with phosphonium ionic liquid Cyphos IL 101. Hydrometallurgy 110, 85, 2011.
  • 17. LVAB Y., JIAAC Y., ZHANGAB CH., CUIAB Z., LINC P., JIANGC X., JINGA Y. Extraction of Chloride Ions from Zinc-Bearing Waste Lixivium by Trioctyl Amine (TOA). Sep. Sci. Technol. 49, 1192, 2014.
  • 18. ZHU Z., ZHANG W., PRANOLO Y., CHENG C.Y. Separation and recovery of copper, nickel, cobalt and zinc in chloride solutions by synergistic solvent extraction. Hydrometallurgy 127, 1, 2012.
  • 19. LENARCIK B., OJCZENASZ P. The influence of the size and position of the alkyl groups in alkylimidazole molecules on their acid – base properties. J. Heterocycl. Chem. 39, 287, 2002.
  • 20. RADZYMINSKA-LENARCIK E. Search for the possibility of utilizing the differences in complex-forming capacities of alkylimidazoles for selective extraction of some metal ions from aqueous solutions. Pol. J. Chem. Technol. 10, (1), 73, 2008.
  • 21. RADZYMINSKA-LENARCIK E. Effect of alkyl chain length on the extraction of copper(II) complexes with 1-alkyl-2-methylimidazoles. Sep. Sci. Technol. 42, 2661, 2007.
  • 22. LENARCIK B., KIERZKOWSKA A. The influence of alkyl chain length and steric effect on extraction of zinc(II) complexes with 1-alkyl-2-methylimidazoles. Solv. Ext. Ion Exch. 24, 433, 2006.
  • 23. ULEWICZ M., RADZYMINSKA-LENARCIK E. Application of supported and polymer membrane with 1-decyl-2-methylimidazole for separation of transition metal ions. Physicochem. Probl. Miner. Process. 48, 91, 2012.
  • 24. PERNAK J., KRYSINSKI J., SKRZYPCZAK A. Bactericidal aluminum compounds. A. Tenside Surfact. Det., 24, 276, 1987 [In German].

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-76c3b281-faa5-4059-8e3d-efaaa7a098b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.