PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 6 |

Tytuł artykułu

Automatic coastline detection using image enhancement and segmentation algorithms

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Coastlines have hosted numerous civilizations since the earliest times of mankind due to the advantages they offer such as natural resources, transportation, arable areas, seafood, trade, and biodiversity. Coastal regions should be monitored vigilantly by planners and control mechanisms, and any changes in these regions should be detected with its human or natural origin, and future plans and possible interventions should be formed in these aspects to maintain ecological balance, sustainable development, and planned urbanization. Integrated coastal zone management (ICZM) provides an important tool to reach that goal. One of the important elements of ICZM is the detection of coastlines. While there are several methods to detect coastlines, remote sensing methods provide the fastest and the most efficient solutions. In this study, color infrared, grayscale, RGB, and fake infrared images were processed with the median filtering and segmentation software developed within the study, and coastal lines were detected by the edge detection method. The results show that segmentation with fake infrared images derived from RGB images give the best results.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

6

Opis fizyczny

p.2519-2525,fig.,ref.

Twórcy

autor
  • Department of Geomatics, Ondokuz Mayıs University, Samsun, Turkey
autor
  • Department of Photogrammetry, General Command of Mapping, Ankara, Turkey
autor
  • Department of Computer Engineering, Cankaya University, Ankara, Turkey

Bibliografia

  • 1. SESLİ F.A. Mapping and Monitoring Temporal Changes for Coastal Region of Samsun, International Journal of the Physical Sciences, 5 (10), 1567, 2010.
  • 2. PAPAKONSTANTINOU A., KOSTANTINOS T., PAVLOGEORGATOS G. Coastline change detection using UAV Remote Sensing GIS and 3D reconstruction, Planning and Economics (CEMEPE 2015) and SECOTOX Conference, 2015.
  • 3. ZHANG H.G., LI D.L., SHI A.Q. On Scale Correction Model of Coastline and its Application for Coastline Remote Sensing Monitoring, Applied Mechanics and Materials, 303-306, 734, 2013.
  • 4. KANKARAA R.S., CHENTHAMIL SELVANA S., VIPIN J. MARKOSEA, B. RAJANA, AROCKIARAJA S. Estimation of long and short term shoreline changes along Andhra Pradesh coast using Remote Sensing and GIS techniques, Procedia Engineering 116, 855, 2015.
  • 5. SHI X., CHEN H., QUI T., ZHANG Y. A Novel Coastline Detection Method of Remote Sensing Imagery with Local Gradient Based on Hybrid Active Contour Model, ICIC EXPRESS LETTERS 9 (6),1651, 2015.
  • 6. ZHANG Y., XUEMINIG L., JIANLI Z., DERUI S. A Study on Coastline Extraction and Its Trend Based on Remote Sensing Image Data Mining, Hindawi Publishing Corporation Abstract and Applied Analysis, Volume: 2013, Article ID:693194, 2013.
  • 7. OZTURK D., SESLİ F.A. Determination of Temporal Changes in the Sinuosity and Braiding Characteristics of the Kizilirmak River, Turkey. Pol. J. Environ. Stud. 24 (5), 2095, 2015.
  • 8. EUROPEAN COMMISSION (EC) Towards a European Integrated Coastal Zone Management (ICZM) Strategy, Directorates General Environment, Nuclear Safety and Civil Protection; Fisheries, Regional policies and Cohesion, Brussels, 1999.
  • 9. GESAMP (IMO/FAO/UNSECO-IOC/WMO/WHO/IAEA/UNEP) Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection, The Contribution of Science Integrated Coastal Management, GESAMP Reports and studies. No:61., 1996.
  • 10. NORMAN B.J. Integrated Coastal Management to Sustainable Coastal Planning, PhD Thesis, RMIT University, Social Science and Planning College of Design and Social Context, 2010.
  • 11. QIDWAI U., CHEN C.H. Digital Image Processing: an Algorithmic Approach with MATLAB. CRC Press, 2010.
  • 12. WANG C., ZHANG J., MA Y. Coastal Land Covers Classification of High-Resolution Images Based on Dempster-Shafer Evidence Theory, International Conference on Computer Science and Software Engineering, Volume 1: Artificial Intelligence, December 12-14, 2008.
  • 13. YANG J., PEIJUN L., YUHONG H. A multi-band approach to unsupervised scale parameter selection for multi-scale image segmentation, ISPRS Journal of Photogrammetry and Remote Sensing 94, 13, 2014.
  • 14. ECOGNITION eCognition Developer 8.7 Reference Book, Trimble Documentation, München Germany, 438, 2011.
  • 15. ALI M., CLAUSI D. Using the Canny Edge Detector for Feature Extraction and Enhancement of Remote Sensing Images, Geoscience and Remote Sensing Symposium, 5, 2298, 2001.
  • 16. HONG N.T.K., CECILE B., TUAN V.P. Performance and Evaluation Sobel Edge Detection on Various Methodologies, International Journal of Electronics and Electrical Engineering, 2 (1), 15, 2014.
  • 17. CHEN Y., DENG C., XIAXIA C. An Improved Canny Edge Detection Algorithm, International Journal of Hybrid Information Technology, 8 (10), 359, 2015.
  • 18. KOENDERINK J.J. Theory of “Edge-Detection, Analysis for Science, Engineering and Beyond, Heidelberg: Springer Berlin, 35, 2012.
  • 19. KARANDE K.J., TALBAR S.N. Laplacian of Gaussian Edge Detection for Face Recognition Using ICA, Independent Component Analysis of Edge Information for Face Recognition, 35, 2014.
  • 20. SHIMA T., SAITO S., NAKAJIMA M. Design and Evaluation of More Accurate Gradient Operators on Hexagonal Lattices, IEEE Transactions on Software Engineering 32 (6), 961, 2010.
  • 21. WEI G.W., JIA Y.Q. Synchronization Based Image Edge Detection, Europhysics Letters, 59 (6), 814, 2007.
  • 22. PINNAMANENI B., RADHAKRISHNAN N., BHARATHI S. Mathematical Morphology Image Analysis Metrology, Machine Vision technology and Its Applications Workshop, 2013.
  • 23. URL1 Wikipedia,http://en.wikipedia.org/wiki/Morphological_ image_processing 31 Jan 2016.
  • 24. BELLAIRE G., TALMI K., OEZGUER E., KOSCHAN A. Characteristic Views: Obtaining 2-D Reconstructions From Color Edges, IEEE SSIAI’98, Tuscon USA, 1998

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-76c15ddc-d06c-42bd-89cb-c048e8b01998
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.