PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 62 | 2 |

Tytuł artykułu

The effectiveness of photocatalytic ionisation disinfection of filter materials

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The purpose of this study was to determine the effectiveness of photocatalytic ionisation as a disinfection method for filter materials contaminated by microorganisms, and to assess how air relative humidity (RH), time and microbe type influence the effectiveness of this disinfection. In the quantitative analysis of a used car air filter, bacterial contamination equalled 1.2×10⁵ cfu/cm² , fungal contamination was 3.8×10⁶ cfu/cm² , and the isolated microorganisms were Aspergillus niger, Bacillus megaterium, Cladosporium herbarum, Cryptococcus laurenti, Micrococcus sp., Rhodotorula glutinis and Staphylococcus cohnii. In the model experiment, three isolates (C. herbarum, R. glutinis, S.cohnii) and 3 ATCC species (A. niger, E.coli, S. aureus) were used for photocatalytic ionisation disinfection. The conditions of effective photocatalytic ionisation disinfection (R≥99.9%) were established as 2–3 h at RH=77% (bacteria) and 6–24 h at RH=53% (fungi). RH has an influence on the effectiveness of the photocatalytic disinfection process; the highest effectiveness was obtained for bacteria at RH=77%, with results 5% higher than for RH=49%. The studies show that the sensitivity of microorganisms to photocatalytic ionisation disinfection is ordered as follows: Gram-positive bacteria (S.cohnii, S. aureus), Gram-negative bacteria (E.coli), yeasts (R. glutinis), and moulds (C. herbarum, A. niger). Of all the mathematical models used for the description of death dynamics after photocatalytic ionisation disinfection, the Chick-Watson model is the most useful, but for more resistant microorganisms, the delayed Chick-Watson model is highly recommended. It therefore seems, that the presented disinfection method of photocatalytic ionisation can be successfully used to clean filtration materials.

Wydawca

-

Rocznik

Tom

62

Numer

2

Opis fizyczny

p.131-139,fig.,ref.

Twórcy

autor
  • Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Lodz, Poland
  • Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Lodz, Poland

Bibliografia

  • Barkhudarov E.M., N. Christofi, I.A. Kossyi, M.A. Misakyan, J. Sharp and I.M. Taktakishvili. 2008. Killing bacteria present on surfaces in films or in droplets using microwave UV lamps. World J. Microbiol. Biotechnol. 24: 761–9.
  • Chapman M.D. 2006. Challenges associated with indoor moulds: health effects, immune response and exposure assessment. Med. Mycol. J. 44: 529–532.
  • Chen F.N., X. Yang and Q. Wu. 2009. Photocatalytic oxidation of Escherichia coli, Aspergillus niger and formaldehyde under different UV irradiation conditions. Environ. Sci. Technol. 43: 4606–4611.
  • Chen F., X. Yang, H.K.C. Mak and D.W.T. Chan. 2010. Photocatalytic oxidation for antimicrobial control in built environment: A brief literature overview. Build. Environ. 45: 1747–1754.
  • Cho M., W. Choi, H. Chung and J. Yoon. 2004a. Different Inactivation Behaviors of MS-2 Phage and Escherichia coli in TiO₂ Photocatalityic Disinfection. Appl. Environ. Microbiol. 71: 270–275.
  • Cho M., H. Chung, W. Choi and J. Yoon. 2004b. Linear correlation between inactivation of E.coli and OH radical concentration in TiO₂ photocatalytic disinfection. Water. Res. 38: 1069–1077.
  • Dalrymple O.K., E. Stefanakos, M.A. Trotz and D.Y. Goswami. 2010. A review of the mechanisms and modeling of photocatalytic disinfection. Appl. Catal. B 98: 27–38.
  • Ditta I.B., A. Steele, C. Liptrot, J. Tobin, H. Tyler, H.M. Yates, D.W Sheel and H.A. Foster. 2008. Photocatalytic antimicrobial activity of thin surface films of TiO₂, CuO and TiO₂/CuO dual layers on Escherichia coli and bacteriophage T4. Appl. Microbiol. Biotechnol. 79: 127–133.
  • Dunnill C.W., K. Page, Z.A. Aiken, S. Noimark, G. Hyett, A. Kafizas, J. Pratten, M. Wilson and I.P. Parkin. 2011. Nanoparticulate silver coated-titania thin films-Photo-oxidative destruction of stearic acid under different light sources and antimicrobial effects under hospital lighting conditions. J. Photochem. Photobiol. A 220: 113–123.
  • Flannigan B., R.A. Samson and J.D. Miller. 2001. Microorganisms in home and indoor work environments: diversity, health impacts, investigation and control. Taylor & Francis. London and New York.
  • Foster H.A., D.W. Sheel, P. Sheel, P. Evans, S. Varghese, N. Rutschke and H.M. Yates. 2010. Antimicrobial activity of titania/silver and titania/copper films prepared by CVD. J. Photochem. Photobiol. A. 216: 283–289.
  • Foster H.A., I.B. Ditta, S. Varghese and A. Steele. 2011. Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl. Microbiol. Biotechnol. 90: 1847–1868.
  • Fujishima A. and K. Honda. 1972. Electrochemical photolysis of water at a semiconductor electrode. Nature 238: 37–38.
  • Fujishima A. and X. Zhang. 2006. Titanium dioxide photocatalysis: present situation and future approaches. C.R. Chim. 9: 750–760.
  • Gogniat G. and S. Dukan. 2007. TiO₂ photocatalysis causes DNA damage via Fenton reaction-generated hydroxyl radicals during the recovery period. Appl. Environ. Microbiol. 73: 7740–7743.
  • Goswami D.Y., D.M. Trivedi and S.S. Block. 1997. Photocatalytic disinfection of indoor air. J. Sol. Energ-T ASME 119: 92–96.
  • Greist H.T., S.K. Hingorani, K. Kelley and D.Y. Goswami. 2002. Using scanning electron microscopy to visualize photocatalytic mineralization of airborne microorganisms, in: Indoor Air 2002, 9th International Conference on Indoor Air Quality and Climate, Monterey, CA.
  • Gursumeeran Satsangi P., A. Kulshrestha, A. Taneja and P.S.P. Rao. 2011. Measurement of PM10 and PM2.5 aerosols in Agra, a semiarid region in India. Indian J. Radio Space 40: 203–210.
  • Hidaka H., Horikoshi S., Serpone N. and J. Knowland. 1997. In vitro photochemical damage to DNA, RNA and their bases by an inorganic sunscreen agent on exposure to UVA and UVB radiation. J. Photochem. Photobiol. A 111: 205–213.
  • Kikuchi Y., K. Sunada, T. Iyoda, K. Hashimoto and A. Fujishima. 1997. Photocatalytic bactericidal effect of TiO₂ thin films: dynamic view of the active oxygen species responsible for the effect. J. Photochem. Photobiol. A 106(1–3): 51–56.
  • Limaye M.S. and W.T. Coakley. 1998. Clarification of small volume microbial suspensions in an ultrasonic standing wave. J. Appl. Microbiol. 84(6): 1035–1042.
  • Lu Z.X., L. Zhou, Z.L. Zhang, W.L. Shi, Z.X. Xie, H.Y. Xie, D.W. Pang and P. Shen. 2003. Cell damage induced by photocatalysis of TiO₂ thin films. Langmuir 19: 8765–8768.
  • Malato S., P. Fernandez-Ibanez, M.I. Maldonado, J. Blanco and W. Gernjak. 2009. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal. Today 147: 1–59.
  • Matsunaga T., R. Tomoda, T. Nakajima and H. Wake. 1985. Photoelectrochemical sterilization of microbial cells by semiconductor powders, FEMS Microbiol. Lett. 29: 211–214.
  • Salata F., M. Fabiani, D. D’Alessandro, M. Cappelli D’Orazio. 2006. Effectiveness of UV Radiation for Reducing Aspergillus niger Contamination in Air-Conditioning Systems. Preliminary Results Abstracts, 6th Intertantional Conference of the Hospital Infection Society, Amsterdam, The Netherlands.
  • Samson R.A., E.S. Hoekstra and J.C. Frisvad. 1996. Introduction to Foodborne Fungi. Baarn: Centraalbureau voor Schimmenuturees.
  • Sanchez B., M. Sanchez-Munoz, M. Munoz-Vicente, G. Cobas, R. Portela, S. Suarez, A.E. Gonzalez, N. Rodriguez and R. Amils. 2012. Photocatalytic elimination of indoor air biological and chemical pollution in realistic conditions. Chemosphere 87: 625–630.
  • Sunada K., Y. Kikuchi, K. Hashimoto and A. Fujishima. 1998. Bactericidal and detoxification effects of TiO₂ thin film photocatalyst. Environ. Sci. Technol. 32: 726–728.
  • Szponar B. 2010. Impurities in ventilation systems and air conditioning (in Polish). Magazyn Instalatora 140(4): 62.
  • Veremeichenko S.N. and G.M. Zdorovenko. 2004. Structure and Properties of the Lipopolysaccharide of Pseudomonas fluorescens IMV 2366 (Biovar III). Microbiology 73: 260–266.
  • Vohra A., D.Y. Goswami, D.A. Deshpande and S.S. Block. 2006. Enhanced photocatalytic disinfection of indoor air. Appl. Catal. B 65: 57–65.
  • Vonberg R.P., P. Gastmeier, B. Kenneweg, H. Holdack-Janssen, D. Sohr and I.F. Chaberny. 2010. The microbiological quality of air improves when using air conditioning systems in cars. BMC Infect. Dis. 10: 146.
  • Vos P., G. Garrity, D. Jones, N.R. Krieg, W. Ludwig, F.A. Rainey K.H. Schleifer and W.B. Whitman (Eds.). 2009. Bergey’s Manual of Systematic Bacteriology, Volume 3: The Firmicutes, Williams and Wilkins.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-769807bd-7981-469d-b7ca-71ea5a3cbcda
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.