PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 1 |

Tytuł artykułu

Biochemical and molecular analysis of superoxide dismutase in sordaria fimicola and Aspergillus niger collected from different environments

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We evaluated Sordaria fimicola strains collected from benign and harsh environments of Evolution Canyon 1 (EC 1) for superoxide dismutase (SOD) enzyme activity, and analyzed their respective gene sequences, which were then submitted to the NCBI database for the first time. Ten strains of Aspergillus niger were used as control in a SOD assay. In enzymatic analysis, among 61 isolates the N6 strain of S. fimicola was found to be the most efficient as it caused 50% inhibition of NBT (Nitro-blue tetrazolium) reduction at 20 µg of the SOD protein, while in A. niger, strain 744 showed 60% inhibition of the NBT reduction at 40 µg amount of SOD protein and was found to be most efficient among A. niger. The superoxide dismutase-1 (SOD-1) gene (including exones and introns; 960 bases) was amplified and sequenced from biochemically efficient strains of S. fimicola viz. N6, N7, S2, S1, and SF13, and submitted to the NCBI database under accession numbers KM282180, KM282181, KM282179, KM282178, and KM282177, respectively. On comparison with the reported sequence of Neurospora crassa (M58687.1), a total of 25 base substitutions and seven amino acids changes were detected in the in silico translated proteins of all five strains of S. fimicola compared to the reference sequence of N. crassa (M18334.1). The biochemical as well as molecular data of the study proved that environmental stresses affected the SOD-1 gene by bringing in mutations, which may result in genomic diversity among their frontier molecules such as proteins. The observed enzymatic activity of SOD in S. fimicola strains was reported to be even better and was comparable to A. niger strains, and thus S. fimicola strains can be exploited further for enzymatic production for industrial use.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

1

Opis fizyczny

p.115-125,fig.,ref.

Twórcy

autor
  • Molecular Genetics Research Laboratory, Department of Botany, University of the Punjab, Lahore, Pakistan
autor
  • Department of Biochemistry; Human Genetics and Molecular Biology, University of Health Sciences, Lahore, Pakistan
autor
  • Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
autor
  • Molecular Genetics Research Laboratory, Department of Botany, University of the Punjab, Lahore, Pakistan

Bibliografia

  • 1. GHORAI S., BANIK S.P., VERMA D., CHOWDURY S., MUKHERJEE S., KHOWALA S. Fungal biotechnology in food and feed processing. Food Res. Int. 42, 577, 2007.
  • 2. KAVAK H. Some Biological Parameters in Sordaria fimicola. Pak. J. Bot. 44, 1079, 2012.
  • 3. ARCHER D.B., CONNERTON I.F., MACKENZIE D.A. Filamentous fungi for production of food additives and processing aids. Adv. Biochem. Eng. Biot. 111, 99, 2008.
  • 4. YOUSEFF B.H., HOLBROOK E.D., SMOLNYCKI K. A., RAPPLEYE C.A. Extracellular Superoxide Dismutase Protects Histoplasma Yeast Cells from Host-Derived Oxidative Stress. PLoS Pathog. 8, 2012.
  • 5. FROHNER I.E., BOURGEOIS C., YATSYK K., MAJER O., KUCHLER K. Candida albicans cell surface superoxide dismutases degrade host-derived reactive oxygen species to escape innate immune surveillance. Mol. Microbiol. 71, 240, 2009.
  • 6. ZHANG N., ZHANG S., BORCHERT S., RICHARDSON K., Schmid J. High Levels of a Fungal Superoxide Dismutase and Increased Concentration of a PR-10 Plant Protein in Associations Between the Endophytic Fungus Neotyphodium lolii and Ryegrass. 24, 984, 2011.
  • 7. ZHENG L.P., GAO L.W., ZHOU J.Q., SIMA Y.H., WANG J.W. Antioxidant activity of aqueous extract of a Tolypocladium sp. fungus isolated from wild Cordyceps sinensis. Afric. J. Biotech. 7, 3004, 2008.
  • 8. ZHANG L.Q., GUO F.X., XIAN H.Q., WANG X.J. Expression of a novel thermostable Cu/Zn-superoxide dismutase from Chaetomium thermophilum in Pichia pastoris and its antioxidant properties. Biotechnol. Lett. 33, 1127, 2011.
  • 9. LI H., SUN X., CAI Z., CAI G., XING K. Identification and analysis of a Cu/Zn superoxide dismutase from Haliotis diversicolor supertexa with abalone juvenile detached syndrome. J. Invertebr. Pathol. 103, 116, 2010.
  • 10. DONG C., LI G., LI Z., ZHU H., ZHOU M., HU Z. Molecular cloning and expression analysis of a Mn-SOD gene from Nelumbo nucifera. Appl. Biochem. Biotechnol. 158, 605, 2009.
  • 11. XU X., ZHOU Y., WEI S., REN D., YANG M., BU H., KANG M., WANG J., FENG J. Molecular cloning and expression of a Cu/Zn-containing superoxide dismutase from Thellungiella halophile. Mol. Cells. 27, 423, 2009.
  • 12. NEVO E. “Evolution Canyon,” a potential microscale monitor of global warming across life. Pro. Natl. Acad. Sci. 109: 2960, 2012.
  • 13. ISHFAQ M., MAHMOOD N., NASIR I.A., SALEEM M. Molecular and Biochemical screening of local Aspergillus niger strains efficient in catalase and laccase enzyme production. Int. J. Agri. Biol. 16, 177, 2014.
  • 14. BRADFORD M.M. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248, 1976.
  • 15. NASIM G., KHAN S., KHOKHAR I. Molecular polymorphism and phylogenetic relationship of some Alternaria alternate isolates. Pak. J. Bot. 44, 642, 2012.
  • 16. HANIF M., KHALID A.N., SAMINA S. Addition to the ectomycorrhizae associated with Hamalaya cydar (C. deodara) using rDNA-ITS. Int. J. Agr. Biol. 14, 101, 2012.
  • 17. TAMURA K., STECHER G., PETERSON D., FILIPSKI A., KUMAR S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Bio. Evo. 30, 2725, 2013.
  • 18. HOFFMEISTER D., KELLER N.P. Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat. Prod. Rep. 24, 393, 2007.
  • 19. LERCH K., SCHENK E. Primary structure of copper-zinc superoxide dismutase from Neurospora crassa. J. Biol. Chem. 260, 9559, 1985.
  • 20. PARENICOVA L., SKUBOE P., FRISVAD J., SAMSON R.A., ROSSEN L., TEN HOOR-SUYKERBUYK M., VISSER J. Combined molecular and biochemical approach identifies Aspergillus japonicus and Aspergillus aculeatus as two species. Appl. Environ. Microbiol. 67, 521, 2001.
  • 21. MEYER A., TODT C., MIKKELSEN N.T., LIEB B. Fast evolving 18S rRNA sequences from Solenogastres (Mollusca) resist standard PCR amplification and give new insights into mollusk substitution rate heterogeneity. BMC. EVOL. Biol. 10, 56, 2010.
  • 22. NOWROUSIAN M., STAJICH J.E., CHU M., ENGH I., ESPAGNE E., HALLIDAY K., KAMEREWERD J., KEMPKEN F., KNAB B., KUO H.C., OSIEWACZ H.D., POGGELER S., READ N.D., SEILER S., SMITH K.M., ZICKLER D., KUCK U., FREITAG M. De novo assembly of a 40 Mb eukaryotic genome from short sequence reads: Sordaria macrospora, a model organism for fungal morphogenesis. PLoS Genet. 6, 2010.
  • 23. TEICHERT I., WOLFF G., KUCK U., NOWROUSIAN M. Combining laser microdissection and RNA-seq to chart the transcriptional landscape of fungal development. BMC. Genomics. 13, 511, 2012.
  • 24. ZHOU X.W., WANG X.F., LI Q.Z. Expression and characteristic of the Cu/Zn superoxide dismutase gene from the insect parasitizing fungus Cordyceps militaris. Mol. Biol. Rep. 39, 10303, 2012.
  • 25. LAMBOU K., LAMARRE C., BEAU R., DUFOUR N., LATGE J. Functional analysis of the superoxide dismutase family in Aspergillus fumigatus. Mol. Biol. 74, 910, 2010.
  • 26. KALEEM A., AHMAD I., SHAKOORI A.R., NASIR-UDDIN. Regulation of neurofibromin by post-translational modification. Pak. J. Zool. 40, 417, 2008.
  • 27. TOMONAGA T., MATSUSHITA K., YAMAGUCHI S., OHISHI M., KODERA Y., MAEDA T., HIDEAKI SHIMADA, OCHIAI T., NOMURA F. Identification of altered protein expression and post-translational modifications in primary colorectal cancer by using agarose two-dimensional gel electrophoresis. Clin. Cancer Res. 10, 2007, 2004.
  • 28. LARRONDO L.F., AVILA M., SALA L., CULLEN D., VICUN T. Heterologous expression of laccase cDNA form Ceriporiopsis subvermispora yields copper-activated apoprotein and complex isoform patterns. Microbiology. 149, 1177, 2003.
  • 29. TANABE Y., SAIKAWA M., WATANABE M.M. SUGIYAMA J. Molecular phylogeny of Zygomycota based on EF-1alpha and RPB1 sequences: limitations and utility of alternative markers to rDNA. Mol. Phylogenet. Evol. 30, 438, 2014.
  • 30. FRÉALLE E., NOËL C., NOLARD N., SYMOENS F., FELIPE M., DEI-CAS E., CAMUS D., VISCOGLIOSI E., DELHAES L. Manganese superoxide dismutase based phylogeny of pathogenic fungi. Mol. Phylogenet. Evol. 41, 28, 2006.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7691409a-c5af-46d6-bcff-a77e117f70e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.