PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 3 |

Tytuł artykułu

Effects of oxytetracycline on growth and chlorophyll fluorescence in rape (Brassica campestris L.)

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study aims to investigate the effects of oxytetracycline on growth and photosynthetic capacity of rape (Brassica campestris L.). Four levels of oxytetracycline (0, 10, 100, and 200 mg kg⁻¹) were added to the potted soil. Chlorophyll fluorescence parameters induced by five levels (90, 190, 420, 820, and 1,500 μmol photons m⁻² s⁻¹) of PAR (PAR, photosynthetically active radiation) were measured. Plant growth indices and leaf traits were also determined. Electron transport rate increased along with the increase of PAR, but an opposite trend was found for the effective quantum yield of PSII. The quantum yield of light-induced non-photochemical fluorescence quenching in higher oxytetracycline treatments (100 and 200 mg kg⁻¹) gradually increased when PAR increased from 90 to 820 μmol photons m⁻² s⁻¹, but then declined under higher PAR gradients. The fractions of quantum yield of non-light-induced non-photochemical fluorescence quenching in PSII were significantly higher in all the oxytetracycline treatments than in the control. Oxytetracycline exposure was also found to alter the energy distribution in the photosynthetic electron transport chain. This study showed that oxytetracycline exposure evidently diminished the photosynthetic capacity of rape, which was further supported by the observations that growth indices and leaf traits were significantly inhibited by oxytetracycline.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

3

Opis fizyczny

p.995-1001,fig.

Twórcy

autor
  • Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, Anhui 241000, China
  • School of Life Sciences, Hefei Normal University, Hefei, Anhui 230601, China
autor
  • School of Life Sciences, Hefei Normal University, Hefei, Anhui 230601, China
autor
  • School of Life Sciences, Hefei Normal University, Hefei, Anhui 230601, China
autor
  • School of Life Sciences, Hefei Normal University, Hefei, Anhui 230601, China
autor
  • School of Life Sciences, Hefei Normal University, Hefei, Anhui 230601, China
autor
  • School of Life Sciences, Hefei Normal University, Hefei, Anhui 230601, China
autor
  • Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, Anhui 241000, China

Bibliografia

  • 1. Thiele-Bruhn S. Pharmaceutical antibiotic compounds in soils – a review. Journal of Plant Nutrition & Soil Science, 166 (2), 145, 2003.
  • 2. Homem V., Santos L. Degradation and removal methods of antibiotics from aqueous matrices – a review. Journal of Environmental Management, 92 (92), 2304, 2011.
  • 3. Boxall A., Kraak G.V.D. Pharmaceuticals and personal care products in the environment, what are the big questions? Environmental Health Perspectives, 120 (9), 1221, 2012.
  • 4. Luo Y., Xu L., Rysz M., WANG Y., ZHANG H., ALVAREZ P.J.J. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China. Environmental Science & Technology, 45 (5), 1827, 2011.
  • 5. Meena V.D., Dotaniya M.L., Saha J.K., PATRA A.K. Antibiotics and antibiotic resistant bacteria in wastewater: Impact on environment, soil microbial activity and human health. African Journal of Microbiology Research, 9 (14), 965, 2015.
  • 6. Topp E., Chapman R., Deverslamrani M., HARTMANN A., MARTI R., MARTINLAURENT F., SABOURIN L., SCOTT A., SUMARAH M. Accelerated biodegradation of veterinary antibiotics in agricultural soil following long-term exposure, and isolation of a sulfamethazine-degrading sp. Journal of Environmental Quality, 42 (1), 173, 2013.
  • 7. Megraud F., Coenen S., Versporten A., KIST M., LOPEZ-BREA M., HIRSCHL A., ANDERSEN L. P., GOOSSENS H., GLUPCZYNSKI Y. Helicobacter pylori, resistance to antibiotics in Europe and its relationship to antibiotic consumption. Gut, 62 (1), 34, 2013.
  • 8. Wang N., Wang Z.C., Feng G.E., JING X.U., SHAN Z.J. Environmental exposure assessment of three typical kinds of veterinary antibiotics. Journal of Ecology & Rural Environment, 30 (1), 77, 2014.
  • 9. Martínez-Carballo E., González-Barreiro C., Scharf S., GANS O. Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environmental Pollution, 148 (2), 570, 2007.
  • 10. Hamscher G., Sczesny S., Höper H., Nau H. Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Analytical Chemistry, 74 (7), 1509, 2002.
  • 11. Wu L., Pan X., Chen L., HUANG Y., TENG Y., LUO Y., CHRISTIE P. Occurrence and distribution of heavy metals and tetracyclines in agricultural soils after typical land use change in east China. Environmental Science & Pollution Research International, 20 (12), 8342, 2013.
  • 12. HU X.G., Luo Y, Zhou Q.X., LIN X.U. Determination of thirteen antibiotics residues in manure by solid phase extraction and high performance liquid chromatography. Chinese Journal of Analytical Chemistry, 36 (9), 1162, 2008.
  • 13. Huang X., Liu C., Li K., LIU F., LIAO D., LIU L., ZHU G., LIAO J. Occurrence and distribution of veterinary antibiotics and tetracycline resistance genes in farmland soils around swine feedlots in Fujian Province, China. Environmental Science & Pollution Research, 20 (12), 9066, 2013.
  • 14. Hu X.G., Zhou Q.X., LUO Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environmental Pollution, 158 (9), 2992, 2010.
  • 15. Brausch J.M., Connors K.A., Brooks B.W., RAND G.M. Human pharmaceuticals in the aquatic environment: a review of recent toxicological studies and considerations for toxicity testing. Reviews of Environmental Contamination and Toxicology, 218, 1, 2012.
  • 16. Batchelder A.R. Chlortetracycline and oxytetracycline effects on plant growth and development in soil systems. Journal of Environmental Quality, 11 (4), 675, 1982.
  • 17. Liu F., Ying G.G., Tao R., ZHAO J.L., YANG J.F., ZHAO L.F. Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities. Environmental Pollution, 157 (5), 1636, 2009.
  • 18. LI Z J., Xie X.Y., Zhang S.Q., LIANG Y.C. Negative effects of oxytetracycline on wheat (Triticum aestivum L.) growth, root activity, photosynthesis, and chlorophyll contents. Agricultural Sciences in China, 10 (10), 1545, 2011.
  • 19. Marco G.D., Gismondi A., Canuti L., SCIMECA M., VOLPE A., CANINI A. Tetracycline accumulates in Iberis sempervirens L. through apoplastic transport inducing oxidative stress and growth inhibition. Plant Biology, 16 (4), 792, 2014.
  • 20. Kasai K., Kanno T., Endo Y., WAKASA K., TOZAWA Y. Guanosine tetra- and pentaphosphate synthase activity in chloroplasts of a higher plant: association with 70S ribosomes and inhibition by tetracycline. Nucleic Acids Research, 32 (19), 5732, 2004.
  • 21. AHMED S.E., MAHDY A.E.S. Conditions of oilseed rape cultivation in selected countries in Central Europe. Pamietnik Pulawski, 27 (11), 472, 2003.
  • 22. Mikkola H., Pahkala K., Ahokas J. Energy consumption in barley and turnip rape cultivation for bioethanol and biodiesel (RME) production. Biomass & Bioenergy, 35 (1), 505, 2011.
  • 23. Piquemal J., Cinquin E., Couton F., RONDEAU C., SEIGNORET E., DOUCET I., PERRET D., VILLEGER M.J., VINCOURT P., BLANCHARD P. Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theoretical & Applied Genetics, 111 (8), 1514, 2005.
  • 24. Basunanda P., Spiller T.H., Hasan M., GEHRINGER A., SCHONDELMAIER J., LÜHS W., FRIEDT W., SNOWDON R.J. Marker-assisted increase of genetic diversity in a double-low seed quality winter oilseed rape genetic background. Plant Breeding, 126 (6), 581, 2007.
  • 25. Snowdon R.J., Luy F.L.I. Potential to improve oilseed rape and canola breeding in the genomics era. Plant Breeding, 131 (131), 351, 2012.
  • 26. Zahn L.M. The genomic origins of rape oilseed. Science, 345 (6199), 886, 2014.
  • 27. Ollerenshaw J.H., Lyons T., Barnes J.D. Impacts of ozone on the growth and yield of field-grown winter oilseed rape. Environmental Pollution, 104 (1), 53, 1999.
  • 28. Sheng X.F., Xia J.J., Jiang C.Y., HE L.Y., QIAN M. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environmental Pollution, 156 (3), 1164, 2008.
  • 29. Tian L.Y., Yang J.Y., Huang J.H. Uptake and speciation of vanadium in the rhizosphere soils of rape (Brassica juncea L.). Environmental Science & Pollution Research, 22 (12), 9215, 2015.
  • 30. Mourato M.P., Moreira I.N., Leitão I., PINTO F.R., SALES J.R., MARTINS L.L. Effect of heavy metals in plants of the genus Brassica. International Journal of Molecular Sciences, 16 (8), 17975, 2015.
  • 31. LI Z.J., XIE X.Y., ZHANG S.Q., LIANG Y.C. Wheat growth and photosynthesis as affected by oxytetracycline as a soil contaminant. Pedosphere, 21 (2), 244, 2011.
  • 32. Maxwell K., Johnson G.N. Chlorophyll fluorescence: a practical guide. Journal of Experimental Botany, 51 (345), 659, 2000.
  • 33. Govindjee. A role for a light-harvesting antenna complex of photosystem II in photoprotection. Plant Cell, 14 (8), 1663, 2002.
  • 34. Kramer D.M, Johnson G., Kiirats O., EDWARDS G.E. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis Research, 79 (2), 209, 2004.
  • 35. BAKER N.R., HARBINSON J., Kramer D.M. Determining the limitations and regulation of photosynthetic energy transduction in leaves. Plant Cell & Environment, 30 (9), 1107, 2007.
  • 36. Baker N.R. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59 (1), 89, 2007.
  • 37. Liu Z., Chen W., He X.Y. Influence of Cd²⁺ on growth and chlorophyll fluorescence in a hyperaccumulator: Lonicera japonica Thunb. Journal of Plant Growth Regulation, 34, 672, 2015.
  • 38. Papageorgiou G.C., Govindjee S. Chlorophyll a fluorescence: a signature of photosynthesis. Springer-Verlag, New York, 2005.
  • 39. ARISTILDE L., MELIS A., SPOSITO G. Inhibition of photosynthesis by a fluoroquinolone antibiotic. Environmental Science & Technology, 44 (4), 1444, 2010.
  • 40. González-Pleiter M., Gonzalo S., Rodea-Palomares I., LEGANÉS F., ROSAL R., BOLTES K., MARCO E., FERNÁNDEZ-PIÑAS F. Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: Implications for environmental risk assessment. Water Research, 47 (6), 2050, 2013.
  • 41. Jifon J.L., Syvertsen J.P., Whaley E. Growth environment and leaf anatomy affect nondestructive estimates of chlorophyll and nitrogen in Citrus leaves. Journal of the American Society for Horticultural Science, 130 (2), 152, 2005.
  • 42. Figueroa R.A., Mackay A.A. Sorption of oxytetracycline to iron oxides and iron oxide-rich soils. Environmental Science & Technology, 39 (17), 6664, 2005.
  • 43. Kong W.D., Zhu Y.G., Liang Y.C., ZHANG J., SMITH F. A., YANG M. Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.). Environmental Pollution, 147 (1), 187, 2007.
  • 44. Tikkanen M., Mekala N.R., Aro E.M. Photosystem II photoinhibition-repair cycle protects Photosystem I from irreversible damage. Biochimica Et Biophysica Acta, 1837 (1), 210, 2014.
  • 45. Gao P., Zuo Z., Wu X., GAO Y., GAO R., ZHANG R. Effects of cycloheximide on photosynthetic abilities, reflectance spectra and fluorescence emission spectra in Phyllostachys edulis. Trees, 30 (3), 719, 2015.
  • 46. Possell M., Ryan A., Vickers C.E., MULLINEAUX P.M., HEWITT C.N. Effects of fosmidomycin on plant photosynthesis as measured by gas exchange and chlorophyll fluorescence. Photosynthesis Research, 104 (1), 49, 2010.
  • 47. SOUZA R.P., MACHADO E.C., SILVA J.A.B., LAGÔA A.M.M.A., SILVEIRA J.A.G. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environmental & Experimental Botany, 51 (1), 45, 2004.
  • 48. Flexas J., Briantais J.M., Cerovic Z., MEDRANO H., MOYA I. Steady-state and maximum chlorophyll fluorescence responses to water stress in grapevine leaves: a new remote sensing system. Remote Sensing of Environment, 73 (3), 283, 2000.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-76540082-0acf-4680-acf9-f539a84cf167
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.