Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 13 | 5 |
Tytuł artykułu

Rooting of a trumpet creeper (Campsis radicans (L.) Seem.) microshoots in presence of auxins

Warianty tytułu
Ukorzenianie milinu amerykańskiego (Campsis radicans (L.) Seem.) w obecności auksyn
Języki publikacji
A trumpet creeper (Campsis radicans) is an attractive vine propagated vegetatively through cuttings. So far, there is very little available data on propagation of this beautiful species in tissue culture. There was a research conducted in order to estimate the possibility to obtain rooted Campsis radicans plants that had been cultivated in tissue culture. The plant material were shoots obtained by multiplication on Murashige and Skoog [1962] (MS) medium which were put in fresh media supplemented with auxins: IAA (indoleacetic acid), IBA (indolebutyric acid) or NAA (naphthaleneacetic acid). The shoots were rooted in vitro or transplanted into soil (peat + perlite 1 : 1 w/v). It was noted that Campsis radicans is a very difficult plant to root in tissue culture. No rooting was obtained in vitro. Use of a stimulating passage with a hormone free medium or the ones containing IAA or IBA in concentrations of 2.5–5 mg·dm-3 and rooting shoots directly in soil allowed to obtain 100% of well rooted plants.
Milin amerykański (Campsis radicans) to piękny krzew pnący, który rozmnażany jest wegetatywnie za pomocą sadzonek. Niewiele jest informacji dotyczących mikro-rozmnażania tej pięknej rośliny. Przeprowadzono doświadczenia, których celem było uzyskanie ukorzenionych roślin milinu pochodzących z kultur tkankowych. Materiałem roślinnym były pędy uzyskane w drodze rozmnażania na pożywce Murashige i Skooga (MS), które wyłożono na pożywki uzupełnione auksynami: IAA, IBA i NAA. Pędy ukorzeniano in vitro lub sadzono w podłożu (torf + perlit 1 : 1 w/v). Zauważono, że Campsis radicans jest rośliną trudną do ukorzenienia w kulturach tkankowych. Nie stwierdzono żadnych korzeni in vitro. Zastosowanie pasażu stymulacyjnego na pożywce niezawierającej regulatorów wzrostu lub uzupełnionej IAA lub IBA w stężeniach 2,5–5 mg·dm-3 i ukorzenianie pędów bezpośrednio w podłożu pozwoliło na uzyskanie 100% ukorzenionych roślin.
Opis fizyczny
  • Department of Ornamental Plants and Landscape Architecture, University of Life Sciences in Lublin, Gleboka 28, Lublin, Poland
  • Department of Ornamental Plants and Landscape Architecture, University of Life Sciences in Lublin, Gleboka 28, Lublin, Poland
  • Department of Ornamental Plants and Landscape Architecture, University of Life Sciences in Lublin, Gleboka 28, Lublin, Poland
  • Department of Ornamental Plants and Landscape Architecture, University of Life Sciences in Lublin, Gleboka 28, Lublin, Poland
  • Department of Ornamental Plants and Landscape Architecture, University of Life Sciences in Lublin, Gleboka 28, Lublin, Poland
  • Department of Ornamental Plants and Landscape Architecture, University of Life Sciences in Lublin, Gleboka 28, Lublin, Poland
  • Arnold N.P., Binns M.R., Cloutier D.C., Barthakur N.N., Pellerin R., 1995. Auxins, salt concentrations, and their interactions during in vitro rooting of winter-hardy and hybrid tea roses. HortSci., 30(7), 1436–1440.
  • Ault J.R., 2002. Micropropagation of the Rare Lakeside Daisy (Hymenoxys acaulis var. glabra). HortSci., 37(1), 200–201.
  • Babu K., Anu A., Remashree A.B., Praveen K., 2000. Micropropagation of curry leaf tree. Plant Cell Tiss. Org. Cult., 61, 199–203.
  • Bach A., Kraus D., Grabarczyk D., 1996. Mikrorozmnażanie pigwowca japońskiego (Chaenomeles japonica Lindl.). Zesz. Nauk. ATR Bydgoszcz, Rol., 197(39), 115–121.
  • Balla I., Vertesy J., 2001. In vitro culture of hungarian apricot (Prunus armeniaca L.) varieties. Acta Hort., 560, 395–398.
  • Ban I., 2011. On assessing the effect of rooting stimulators and substrate of the roots’ development and growth of Buddleia davidii and Campsis radicans shoots. J. Hort., Forest. Biotechnol., 15(3), 182–187.
  • Beeler J.E., Armel G.R., Brosnan J.T., Vargas J.J., Klingeman W.E., Koepke-Hill R.M., Bates G.E., Kopsell D.A., Flanagan P.C., 2012. Trumpet creeper control with various Indole-3-acetic acid mimics and diflufenzopyr. HortTechnol., 22(5), 677–681.
  • Bertin R.I., 1982. Floral biology, hummingbird pollination and fruit production of trumpet creeper (Campsis radicans, Bignoniaceae). Am. J. Bot., 69, 122–134.
  • Bertin R.I., Barnes C., Guttman S.I., 1989. Self-sterility and cryptic self-sterility in Campsis radicans (Bignoniaceae). Bot. Gaz., 150, 397–403.
  • Boggetti B., Jasik J., Mantell S.H., 2001. In vitro root formation in Anacardium occidentale microshoots. Biol. Plant., 44, 175–179.
  • Dalal N.V., Rai V.R., 2004. In vitro propagation of Oroxylum indicum Vent. a medicinally important forest tree. J. Forest Res., 9(1), 61–65.
  • Danya U., Udhayasankar M.R., Punitha D., Arumugasamy K., Suresh S.N., 2012. In vitro regeneration of Tecomella undulata (Sm.) Seem – an endangered medicinal plant. Int. J. Plant, Animal Environ. Sci., 2(4), 44–49.
  • Dąbski M., Kozak D., 1998. Mikrorozmnażanie Polygonum aubertii L. Zesz. Nauk. AR Kraków, 333, 687–691.
  • Dąbski M., Parzymies M., Kozak D., Rubinowska K., Jóźwik K., 2014. Initiation and stabilization of a trumpet creeper (Campsis radicans (L.) SEEM.) tissue cultures. Acta Sci. Pol., Hortorum Cultus, 13(1), 179–189.
  • Deshpande S.R., Josekutty P.C., Prathapasenan G., 1998. Plant regeneration from axillary buds of mature tree of Ficus religiosa. Plant Cell Rep., 17, 571–573.
  • Dirr M.A., 2009. Manual of woody landscape plants. Stipes Publishing, Champaign, Illinois, 199.
  • Distabanjong K., Geneve R.L., 1997. Multiple shoot formation from cotyledonary node segments of Eastern redbud. Plant Cell Tiss. Org. Cult., 47, 247–254.
  • Dohse L., Elston D.M., 2009. Botanical briefs: trumpet vine (Campsis radicans). Cutis, 83, 177–178.
  • Edwards J.T., Oliver L.R., 2004. Emergence and growth of trumpet creeper (Campsis radicans) as affected by rootstock size and planting depth. Weed Technol., 18, 816–819.
  • Enrico R.J., Ramirez S.S., Mroginski L.A., Wall L.G., 2005. In vitro plant regeneration of Alnus acuminata H.B.K. ssp. acuminata and its root nodulation by Frankia. Plant Cell Tiss. Org. Cult., 80, 343–346.
  • Feyissa T., Welander M., Negash L., 2005. Micropropagation of Hagenia abyssinica: a multipurpose tree. Plant Cell Tiss. Org. Cult., 80, 119–127.
  • Gabryszewska E., Warabieda D., 1992. Ukorzenianie mikrosadzonek lilaka zwyczajnego (Syringa vulgaris L.) cv. Madame Florent Stepman in vitro i in vivo. Prace ISiK Rośliny Ozdobne, ser. B., t. 17, 189–202.
  • Gokhale M., Bansal Y.K., 2009. Direct in vitro regeneration of a medicinal tree Oroxylum indicum (L.) Vent. through tissue culture. Afr. J. Biotechnol., 8(16), 3777–3781.
  • Gonzalez-Rodriguez J.A., Ramirez-Garduza F., Robert M.L., O’Connor-Sanchez A., PenaRamirez Y.J., 2010. Adventitious shoot induction from adult tissues of the tropical timber tree yellow Ipe primavera (Tabebuia donnell-smithii rose (Bignoniaceae)). In Vitro Cell. Dev. Biol., 46(5), 411–421.
  • Hashem F.A., 2007. Free radical scavenging activity of the flavonoids isolated from Tecoma radicans. IJBAS, 3(1), 49–53.
  • Jha A.K., Prakash S., Jain N., Nanda K., Gupta S.C., 2003/4. Micropropagation of Sesbania sesban from the mature tree-derived explants. Biol. Plant., 47(1), 121–124.
  • Kołodziejska-Degórska I., Zych M., 2006. Bees substitute birds pollination of ornitogamous climber Campsis radicans (L.) Seem. in Poland. Acta Soc. Bot. Pol., 75(1), 79–85.
  • Komalavalli N., Rao M.V., 2000. In vitro micropropagation of Gymnea sylvestre – A multipurpose medicinal plant. Plant Cell Tiss. Org. Cult., 61, 97–105.
  • Kyung-Ku Shim, Yoo-Mi Ha, 1997. New gold leaf cultivar of Forsythia koreana (‘Suwon Gold’) and its mass propagation in vitro. Acta Hort., 447, 187–190.
  • Lakshmanan P., Lee C.-L., Goh C.-J., 1997. An efficient in vitro method for mass propagation of a woody ornamental Ixora coccinea L. Plant Cell Rep., 16, 572–577.
  • Larraburu E.E., Apostolo N.M., Llorente B.E., 2012. In vitro propagation of pink lapacho: response surface methodology and factorial analysis for optimisation of medium components. Int. J. Forestry Res., 1, 1–9.
  • Lu M.-C., 2002. Micropropagation of Morus latifolia Poilet using axillary buds from mature trees. Sci. Hort., 96, 329–341.
  • Lu M-C., 2005. Micropropagation of Vitis thunbergii Sieb. et Zucc., a medicinal herb, through high-frequency shoot tip culture. Sci. Hort., 107, 64–69.
  • Malagon R.R., Borodanenko A., Guerra J.L.B., Alejo N.O., 1997. Micropropagation of Fraseri photinia (Photinia × fraseri). Plant Cell Tiss. Org. Cult., 48, 219–222.
  • Manjula S., Thomas A., Daniel B., Nair G.M., 1997. In vitro plant regeneration of Aristolochia indica through axillary shoot multiplication and organogenesis. Plant Cell Tiss. Org. Cult., 51, 145–148.
  • Martin K.P., 2003. Rapid in vitro multiplication and ex vitro rooting of Rotula aquatica Lour., a rare rheophytic woody medicinal plant. Plant Cell Rep., 21, 415–420.
  • Molinar F. Jr., Mackay W.A., Wall M.M., Cardenas M., 1996. Micropropagation of Agarita (Berberis trifoliata Moric.). HortSci., 31, 1030–1032.
  • Murashige T., Skoog F., 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant., 15, 473–479.
  • Palacios F.N., Christou P., Leech M.J., 2002. Regeneration of Lonicera tatarica plants via adventitious organogenesis from cultured stem explants. Plant Cell Rep., 20, 808–813.
  • Parra R., Amo-Marco J.B., 1996. Effects of plant growth regulators and basal media on in vitro shoot proliferation and rooting of Myrtus communis L. Biol. Plant., 38(2), 161–168.
  • Polish Nurserymen Association (Związek Szkółkarzy Polskich), Puddephat I.J., Alderson P.G., Wright N.A., 1999. In vitro root induction in axillary microshoots of Quercus robur L. Ann. Applied Biol., 134(2), 233–239.
  • Sansberro P., Rey H., Mroginski L., 2003. In vitro plantlet regeneration of Schinopsis balansae (Anacardiaceae). Trees, 17, 542–546.
  • Schoene G., Yeager T., 2005. Micropropagation of sweet viburnum (Viburnum odoratissimum). Plant Cell Tiss. Org. Cult., 83, 271–277.
  • Shibli R.A., Smith M.A.L., 1996. Direct shoot regeneration from Vaccinium pahalae (Ohelo) and V. myrtillus (Bilberry) leaf explants. HortSci., 31(7), 1225–1228.
  • Talari S., Swamy N.R., 2013. Direct in vitro organogenesis and plantlet formation from leaf explants of Oroxylum indicum (L.) Kurz and endangered medicinal forest tree. Int. J. Adv. Res., 1(8), 431–438.
  • USDA, 2004. Trumpet creeper Campsis radicans (L.) Seem. ex Bureau. Plant guide. United States Department of Agriculture, National Resources Conservation Service, National Plant Data Center.
  • Wei Guo, Jing Li, Qing Li., Chung Xiu D., Hui Jin F. 2007. Study on tissue culture of Campsis radicans. J. Shandong Forest. Sci. Technol., 1, 36–37. (In Chinese with English Abstract).
  • Wilhelm E., 1999. Micropropagation of juvenile sycamore maple via adventitious shoot formation by use of thidiazuron. Plant Cell Tiss. Org. Cult., 57, 57–60.
  • Wojtania A., Gabryszewska E., 2000. Wpływ regulatorów wzrostu na rozmnaĪanie Coccoloba uvifera L. in vitro. Zesz. Nauk. ISiK, 7, 87–90.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.