Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 21 | 5 |
Tytuł artykułu

Photosynthetic efficiency of four woody species growing on fly ash deposits of a Serbian "Nikola Tesla" - a thermoelectric plant

Treść / Zawartość
Warianty tytułu
Języki publikacji
Photosynthetic efficiency and damage symptoms of Tamarix tetrandra Pallas, Populus alba L., Robinia pseudoacacia L. (planted), and Amorpha fruticosa L. (naturally colonized) were studied at two fly ash deposit lagoons of the 'Nikola Tesla - A' power plant (Obrenovac, Serbia), weathered 5 (L1) and 13 years (L2). In early phases of weathering, after 5 years, a reduced vitality of populations growing on the ash was noticed in planted R. pseudoacacia and spontaneously populated A. fruticosa (P<0.001) in comparison to T. tentandra and P. alba, due to higher salinity and elevated concentrations of As, Mo, Cu, and Mn in the ash. Thirteen years after planting, as weathering proceeded due to reduced salinity and toxicity, A. fruticosa species showed photosynthesis recovery and had the highest photosynthetic efficiency (P<0.001), suggesting that it poses adaptive capacity to survive and develop tolerance to stress in such habitats that strongly recommend this species for planting at fly ash lagoons.
Słowa kluczowe
Opis fizyczny
  • Department of Ecology, Institute for Biological Research " Sinisa Stankovic" University of Belgrade, Bulevar Despota Stefana 142, Belgrade 11060, Serbia
  • 1. U.S. ENVIRONMENTAL PROTECTION AGENCY. USEPA Rep. 530-SW-88-002. Wastes from the combustion of coal by electric utility power plants, U.S. Government Print Office, Washington, DC, 1988.
  • 2. CHU L. M. Natural revegetation of coal fly ash in a highly saline disposal lagoon in Hong Kong. Appl. Veg. Sci. 11, 297, 2008.
  • 3. ADRIANO D. C., PAGE A. L., ELSEEWI A. A., CHANG A., C., STRAUGHAN I. Utilization and disposal of fly ash and other coal residues in terrestrial ecosystems. A Review. J. Environ. Qual. 9, 333, 1980.
  • 4. EL-MOGAZI D., LISK D. J., WEINSTEIN L. H. A review of physical, chemical and biological properties of fly ash and effects on agricultural ecosystems. Sci. Total. Environ. 74,1, 1988.
  • 5. HAERING K. C., DANIELS L. W. Fly Ash: Characteristics and Use in Mined Land Reclamation-A Literature Review. Virginia Coal Energy Res. J. 3, 33, 1991.
  • 6. CARLSON C. L., ADRIANO D. C. Environmental impacts of coal combustion residues. J. Environ. Qual. 22, 227, 1993.
  • 7. KUKIER U., SUMNER M. E. Boron availability to plants from coal combustion by-products. Water Air Soil Pollut. 87, 93, 1996.
  • 8. PAVLOVIĆ P., MITROVIĆ M. DJURDJEVIĆ L. An ecophysiological study of plants growing on the fly ash deposits from the 'Nikola Tesla - A' thermal power station in Serbia. Environ. Manage. 33, 654, 2004.
  • 9. PAVLOVIĆ P., MITROVIĆ M., DJURDJEVIĆ L., GAJIĆ G., KOSTIĆ O. BOJOVIĆ S. Ecological potential of Spiraea van-hauttei (Briot) Zabel for urban (Belgrade city) and fly ash deposit (Obrenovac) landscaping in Serbia. Pol. J. Environ. Stud. 16, 427, 2007.
  • 10. MITROVIĆ M., PAVLOVIĆ P., LAKUŠIĆ D., STEVANOVIĆ B., DJURDJEVIĆ L., GAJIĆ G. KOSTIĆ O. The potential of Festuca rubra and Calamagrostis epigejos for the revegetation on fly ash deposits. Sci. Total Environ. 407, 338, 2008.
  • 11. HAYNES R. J. Reclamation and revegetation of fly ash disposal sites - Challenges and research needs. J. Environ. Manage. 90, 43, 2009.
  • 12. SHAW P. J. A. A Preliminary Study of Successional Changes in Vegetation and Soil Development on Unamended Fly Ash (PFA) in Southern England. J. Appl. Ecol. 29, (3), 728,1992.
  • 13. DŽELETVIĆ Ž., FILIPOVIĆ R. Grain characteristics of crops grown on power plant ash and bottom slag deposit. Resour. Conserv. Recy. 13, 105,1995.
  • 14. SIMONOVIĆ B. Report on waste, surface and ground water monitoring in the 'Nikola Tesla -A' thermal power station at Obrenovac, Holding Institute of General and Physical Chemistry, Belgrade, pp. 1-33, 2003 [In Serbian].
  • 15. WEAR I. J. Method for total boron, In: Methods of Soil Analysis (Ed. A. C. Black), 1060-1062, American Society of Agronomy, Madison, Wisconsin, 1965.
  • 16. OQUIST G., WASS R. A portable, microprocessor operated instrument for measuring chlorophyll fluorescence kinetics in stress physiology. Physiol. Plant. 73, 211, 1988.
  • 17. BJORKMAN O., DEMMIG B. Photon yield of O₂ evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 17, 489, 1987.
  • 18. KABATA-PENDIAS A., PENDIAS H. Trace Elements in Soils and Plants. 3rd edn., CRC Press, Boca Raton, Florida, 2001.
  • 19. PANDEY V. C., SINGH J. S., SINGH R. P., SINGH N., YUNUS M. Arsenic hazards in coal fly ash and its fate in Indian scenario. Resour. Conserv. Recy. 55, 819, 2011.
  • 20. PANDEY V. C., SINGH N. Impact of fly ash Incorporation in Soil Systems. Agrie. Ecosyst. Environ. 136, 16, 2010.
  • 21. MULHERN D. W., ROBEL R. J., FURNESS J. C., HENSLEY D. L. Vegetation on waste disposal areas at a coal-fired power plant in Kansas. J. Environ. Qual. 18, 285, 1989.
  • 22. DJURDJEVIĆ L., MITROVIĆ M., PAVLOVIĆ P., GAJIĆ G., KOSTIĆ O. Phenolic acids as bioindicators of fly ash deposit revegetation. Arch. Environ. Contam. Toxicol. 50, 488, 2006.
  • 23. TOWNSEND W. N., HODGSON D. R. Edaphological problems associated with deposits of pulverized fuel ash, In: Ecology and reclamation of devastated land, I (Eds. R. J. Hutnik and G. Davis), Gordon and Breach, New York, pp. 45-56,1973.
  • 24. HODGSON D. R., BUCKLEY G. P. A practical approach towards the establishment of trees and shrubs on pulverized fuel ash, In: The Ecology of resource degradation and renewal (Eds. M. J. Chadwick and G. T. Goodman), Blackwell Scientific Publications Ltd., Oxford, pp. 305-329, 1975.
  • 25. PAGE A. L., ELSEEWI A. A., STRAUGHAN I. R. Physical and Chemical Properties of Fly Ash from Coal-Fired Power Plants with Reference to Environmental Impacts. Residue Rev. 71, 83,1979.
  • 26. BRADSHAW A. D., CHADWICK M. J. The restoration of land. University of California Press, Berkley, California, 1980.
  • 27. CARLSON C. L., ADRIANO D. C. Growth and elemental content of two tree species growing on abandoned coal fly ash basins. J. Environ. Qual. 20, 581, 1991.
  • 28. ADRIANO D.C. Trace Elements in Terrestrial Environments. Biogeochemistry, Bioavailability,, and Risks of Metals, second ed. Springer, New York, 2001.
  • 29. DOAK R. Pilot project-coal ash burial in saturated conditions. Solid Waste News and Notes 6, 1, 2003.
  • 30. JAMES, W. D., GRAHAM C. C, GLASCOCK M. D., HANNA A. S. G. Water-leachable boron from coal ashes. Environ. Sci. Technol. 16, 195,1982.
  • 31. BECH J., POSCHENRIEDER C., LLUGANY J., BARCELO P.T., TOLOIAS F. J. Arsenic and heavy metal contamination of soil and vegetation around a copper mine in Northern Peru. Sci. Total Environ. 203, 83, 1997.
  • 32. SMITH E., NAIDU R., ALSTON A. M. Chemistry of arsenie in soils: I. Sorption of arsenate and arsenite by four Australian soils. J. Environ. Qual. 28, 1719,1999.
  • 33. BOROWSKA K., LYSZCZARZ R. The selenium concentration in some grass species from mineral and peaty soils. 16th General Meeting of the European Grassland federation, Grado, Italy, 1996.
  • 34. CARLSON C. L., WEBER J., BOLAN N. S., PARAMASIVAM S., KOO B-J., SAJWAN, K. S. Effects of high rates of coal fly ash on soil, turfgrass, and groundwater quality. Water Air Soil Poilut. 139, 365, 2002.
  • 35. SCHNAPPINGER M. G, MARTENS D. C, PLANK C. O. Zinc availability as influenced by application of fly ash to soil. Environ. Sci. Technol. 9, 258,1975.
  • 36. POPOVIĆ A., DJORDJEVIĆ D., POLIĆ P. Trace and major element pollution originating from coal ash suspension and transport processes. Environ. International 26, 251, 2001.
  • 37. PANDEY V. C., ABHILASH P. C., SINGH N. The Indian perspective of utilizing fly ash in phytoremediation, phytomanagement and biomass production. J. Environ. Manage. 90,2943,2009.
  • 38. JUWARKAR A. A., JAMBHULKAR H. P. Restoration of fly ash dumps through biological interventions. Environ. Monit. Assess. 139, 355, 2008.
  • 39. HRYNKIEWIEZ K, BAUM C, NIEDOJADLO J., DAHM H. Promotion of Mycorrhiza Formation and Growth of Willows by the Bacterial Strain Sphingomonas sp. 23L on fly ash. Biol. Fertil. Soils 45, 385, 2009.
  • 40. RAU N., MISHRA V., SHARMA M., DAS M.K., AHALUWALIA K, SHARMA R.S. Evaluation of functional diversity in rhizobacterial taxa of a wild grass (Saccharum ravennae) colonizing abandoned fly ash dumps in Delhi urban ecosystem. Soil Biol. Biochem. 41, 813, 2009.
  • 41. JAMBHULKAR H. P., JUWARKAR A. A. Assessment of bioaeeumulation of heavy metals by different plant species grown on fly ash dump. Ecotox. Environ. Safe. 72, 1122, 2009.
  • 42. DUGGAN J. C., SCANLON D. H. Evaluation of municipal refuse compost for ash pond stabilization. Compost Sci. 15, 26,1974.
  • 43. HODGSON D. R., TOWNSEND W. N. The amelioration and revegetation of pulverized fuel ash. In: Hutnik, R. J., Davis, G. (Eds.), Ecology and reclamation of devastated land, Vol. 2, Gordon and Breach, London, pp. 247-270, 1973.
  • 44. GUPTA A. K., SINHA S. Decontamination and/or revegetation of fly ash dykes through naturally growing plants. J. Hazard. Mater. 153, 1078, 2008.
  • 45. BARNET Y. M., CATT P. C., HEARNE D.H. Biological nitrogen fixation and root-nodule bacteria (Rhizobium sp. and Brady Rhizobium sp.) in two rehabilitating sand dune areas planted with Acacia sp. Aust. J. Bot. 33, 593,1985.
  • 46. MAITI S. K., JAISWAL S. Bioaeeumulation and translocation of metals in the natural vegetation growing on fly ash lagoons: a field study from Santaldih thermal power plant, West Bengal, India. Environ. Monit. Asses. 136, 355, 2008.
  • 47. STRAHLER A. H. Forests of the Fairfax Line. A. Assoc. Am. Geog. 62, 664, 1972.
  • 48. MONTAGNINI F., HAINES B. L., SWANK W. T., WAIDE J. B. Nitrification in undisturbed mixed hardwoods and manipulated forests in the southern Appalachian Mountains of North Carolina, U.S.A. Can. J. For. Res. 19, 1226,1989.
  • 49. KAHL L., KLUGE R., THOMAS S. Evaluation of an attempt to cultivate shrubs and trees on a heap of a potash mine. Landscape Urban Plann. 51, (2), 109, 2000.
  • 50. PANDEY V. C., SINGH K. Is Vigna radiata suitable for the revegetation of fly ash landfills? Ecol. Eng. 37, 2105, 2011.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.