PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 83 | 2 |

Tytuł artykułu

Application and comparative performance of network modularity algorithms to ecological communities classification

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Network modularity is a well-studied large-scale connectivity pattern in networks. The detection of modules in real networks constitutes a crucial step towards a description of the network building blocks and their evolutionary dynamics. The performance of modularity detection algorithms is commonly quantified using simulated networks data. However, a comparison of the modularity algorithms utility for real biological data is scarce. Here we investigate the utility of network modularity algorithms for the classification of ecological plant communities. Plant community classification by the traditional approaches requires prior knowledge about the characteristic and differential species, which are derived from a manual inspection of vegetation tables. Using the raw species abundance data we constructed six different networks that vary in their edge definitions. Four network modularity algorithms were examined for their ability to detect the traditionally recognized plant communities. The use of more restrictive edge definitions significantly increased the accuracy of community detection, that is, the correspondence between network-based and traditional community classification. Random-walk based modularity methods yielded slightly better results than approaches based on the modularity function. For the whole network, the average agreement between the manual classification and the network-based modules is 76% with varying congruence levels for different communities ranging between 11% and 100%. The network-based approach recovered the known ecological gradient from riverside – sand and gravel bank vegetation – to dryer habitats like semidry grassland on dykes. Our results show that networks modularity algorithms offer new avenues of pursuit for the computational analysis of species communities.

Wydawca

-

Rocznik

Tom

83

Numer

2

Opis fizyczny

p.93-102,fig.,ref.

Twórcy

autor
  • Institute of Molecular Evolution, Heinrich-Heine University Dusseldorf, Universitatsstrasse 1, 40225 Dusseldorf, Germany
autor
  • Institute of Molecular Evolution, Heinrich-Heine University Dusseldorf, Universitatsstrasse 1, 40225 Dusseldorf, Germany
autor
  • Genomic Microbiology Group, Institute of Microbiology, Christian-Albrechts-University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
autor
  • Institute of Molecular Evolution, Heinrich-Heine University Dusseldorf, Universitatsstrasse 1, 40225 Dusseldorf, Germany
autor
  • Genomic Microbiology Group, Institute of Microbiology, Christian-Albrechts-University of Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany

Bibliografia

  • 1. Girvan M, Newman MEJ. Community structure in social and biological networks. Proc Natl Acad Sci USA. 2002;99(12):7821–7826. http://dx.doi.org/10.1073/pnas.122653799
  • 2. Fortunato S. Community detection in graphs. Phys Rep. 2010;486(3– 5):75–174. http://dx.doi.org/10.1016/j.physrep.2009.11.002
  • 3. Lancichinetti A, Fortunato S. Community detection algorithms: a comparative analysis. Phys Rev E Stat Nonlin Soft Matter Phys. 2009;80(5). http://dx.doi.org/10.1103/PhysRevE.80.056117
  • 4. Vellend M. Conceptual synthesis in community ecology. Q Rev Biol. 2010;85(2):183–206.
  • 5. Mucina L. Classification of vegetation: past, present and future. J Veg Sci. 1997;8(6):751–760. http://dx.doi.org/10.2307/3237019
  • 6. Braun-Blanquet J, Fuller GD, Conrad HS. Plant sociology: the study of plant communities. New York, NY: Hafner Press; 1965.
  • 7. de Cáceres M, Font X, Vicente P, Oliva F. Numerical reproduction of traditional classifications and automatic vegetationidentification. J Veg Sci. 2009;20(4):620–628. http://dx.doi.org/10.1111/j.1654-1103.2009.01081.x
  • 8. de Cáceres M, Font X, Oliva F. The management of vegetation classifications with fuzzy clustering: fuzzy clustering in vegetationclassifications. J Veg Sci. 2010;21(6):1138–1151. http://dx.doi.org/10.1111/j.1654-1103.2010.01211.x
  • 9. Oliver I, Broese EA, Dillon ML, Sivertsen D, McNellie MJ. Semiautomated assignment of vegetation survey plots within an classificationof vegetation types. Methods Ecol Evol. 2013;4(1):73–81. http://dx.doi.org/10.1111/j.2041-210x.2012.00258.x
  • 10. Roleček J, Tichý L, Zelený D, Chytrý M. Modified TWINSPAN classification in which the hierarchy respects cluster heterogeneity. J Veg Sci. 2009;20(4):596–602. http://dx.doi.org/10.1111/j.1654-1103.2009.01062.x
  • 11. Tichý L, Chytrý M, Hájek M, Talbot SS, Botta-Dukát Z. OptimClass: using species-to-cluster fidelity to determine the optimal partition inclassification of ecological communities. J Veg Sci. 2010;21(2):287–299.http://dx.doi.org/10.1111/j.1654-1103.2009.01143.x
  • 12. Guimerà R, Sales-Pardo M, Amaral L. Modularity from fluctuations in random graphs and complex networks. Phys Rev E Stat Nonlin Soft Matter Phys. 2004;70(2). http://dx.doi.org/10.1103/PhysRevE.70.025101
  • 13. van Dongen S. Graph clustering by flow simulations [PhD thesis]. Utrecht: University of Utrecht; 2000.
  • 14. Rosvall M, Bergstrom CT. Maps of random walks on complex networks reveal community structure. Proc Natl Acad Sci USA.2008;105(4):1118–1123. http://dx.doi.org/10.1073/pnas.0706851105
  • 15. Schmitz U, Lösch R. Neophyten und C4-Pflanzen in der Auenvegetation des Niederrheins. Decheniana. 2005;158:55–77.
  • 16. Schmitz U. Increase of alien and C4 plant species in annual river bank vegetation of the River Rhine. Phytocoenologia. 2006;36(3):393–402.http://dx.doi.org/10.1127/0340-269X/2006/0036-0393
  • 17. Pott R. Die Pflanzengesellschaften Deutschlands. 2nd ed. Stuttgart: E. Ulmer Verlag; 1995.
  • 18. LANUV. Vegetationstypenliste (list of vegetation types and their abbreviation) [Internet]. 2014; Available from: http://www.naturschutzinformationen-nrw.de/methoden/web/babel/media/vegetationstypen.xlsx
  • 19. Schmitz U, Lösch R. Vorkommen und Soziologie der Cuscuta-Arten in der Ufervegetation des Niederrheins. Tuexenia. 1995;15:373–385.
  • 20. Sørensen TJ. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its applicationto analyses of the vegetation on Danish commons. Copenhagen:I kommission hos E. Munksgaard; 1948. (Biologiske Skrifter; vol 5).
  • 21. Ellenberg H, Walter H. Einführung in die Phytologie. Stuttgart: Ulmer; 1956.
  • 22. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecularinteraction networks. Genome Res. 2003;13(11):2498–2504.http://dx.doi.org/10.1101/gr.1239303
  • 23. Fruchterman TMJ, Reingold EM. Graph drawing by force-directed placement. Softw Pr Exp. 1991;21(11):1129–1164. http://dx.doi. org/10.1002/spe.4380211102
  • 24. Newman MEJ. Modularity and community structure in networks. Proc Natl Acad Sci USA. 2006;103(23):8577–8582. http://dx.doi.org/10.1073/pnas.0601602103
  • 25. Brohée S, van Helden J. Evaluation of clustering algorithms for proteinprotein interaction networks. BMC Bioinformatics. 2006;7(1):488.http://dx.doi.org/10.1186/1471-2105-7-488
  • 26. Whittaker RH. Ordination and classification of communities. The Hague: Junk; 1973.
  • 27. Dierschke H. Molinio-Arrhenatheretea (E1). Kulturgrasland und verwandte Vegetationstypen. Teil 1: Arrhenatheretalia Wiesen undWeiden frischer standorte. Synopsis der PflanzengesellschaftenDeutschlands. Göttingen: Selbstverlag der Floristisch-soziologischenArbeitsgemeinschaft; 1997.
  • 28. Rennwald E. Rote Liste der Pflanzengesellschaften Deutschlands mit Anmerkungen zur Gefährdung. Schriftenreihe Für Veg.2000;35:393–592.
  • 29. Runge F. Die Pflanzengesellschaften Mitteleuropas. Münster: Aschendorff; 1990.
  • 30. Wilmanns O. Ökologische Pflanzensoziologie. Heidelberg: Quelle & Meyer; 1998.
  • 31. Schubert R, Hilbig W, Klotz S. Bestimmungsbuch der Pflanzengesellschaften Mittel- und Nordostdeutschlands. Wiesbaden: SpektrumAkademischer Verlag; 2001.
  • 32. Foerster E. Pflanzengesellschaften des Grünlandes in Nordrhein- Westfalen. Münster: Landwirtschaftsverlag; 1983.
  • 33. Verbücheln G, Hinterlang D, Pardey A, Pott R, Raabe U, van de Weyer K. Rote Liste der Pflanzengesellschaften in Nordrhein-Westfalen.Recklinghausen: LÖBF-Schriftenreihe; 1995.
  • 34. Ellenberg H. Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Stuttgart: Eugen Ulmer; 1996.
  • 35. Gonzalez A, Clemente JC, Shade A, Metcalf JL, Song S, Prithiviraj B, et al. Our microbial selves: what ecology can teach us. EMBO Rep. 2011;12(8):775–784. http://dx.doi.org/10.1038/embor.2011.137

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-757ed1b5-5bf2-4afa-86b4-8e3a9692dbe7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.