PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 68 | 3 |

Tytuł artykułu

1H NMR-based metabolic profiling of urine from mice fed Lentinula edodes-derived polysaccharides

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A heteropolysaccharide, named L2, from Lentinula edodes has been proved to possess immunostimulating and anti-ageing activities in previous studies, but its acting mechanism was not completely understood. In this study, 1 H NMR spectroscopy approach was employed to investigate the metabolic profi les of the urine from adult mice after L2 intervention. Using principal component analysis (PCA) and partial least squares-discriminate analysis (PLS-DA), 22 potential biomarkers were found to be mainly involved in some metabolic pathways: amino acid metabolism, energy metabolism, lipid metabolism, tricarboxylic acid (TCA) cycle, urea cycle and gut microbiota metabolism. Among them, the signifi cantly altered metabolites include: elevated glutamate (75%) and creatine (64%); decreased proline (65%), betaine (58%), fucose (63%) and dimethylamine (59%). In conclusion, the present data is helpful to understand the mechanisms related to previously confi rmed immunomodulation and anti-aging effects of L2, and provide valuable information for mining new functions of L2.

Wydawca

-

Rocznik

Tom

68

Numer

3

Opis fizyczny

p.207–216,fig.,ref.

Twórcy

autor
  • College of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
autor
  • College of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
autor
  • College of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
autor
  • College of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China

Bibliografia

  • 1. Alvers A.L., Fishwick L.K., Wood M.S., Hu D., Chung H.S., Dunn W.A. Jr., Aris J.P., Autophagy and amino acid homeostasis are required for chronological longevity in Saccharomyces cerevisiae. Aging Cell, 2009, 8(4), 353–369.
  • 2. Al-Waiz M., Mikov M., Mitchell S.C., Smith R.L., The exogenous origin of trimethylamine in the mouse. Metabolism, 1992, 41(2), 135–136.
  • 3. Ascha M., Wang Z., Ascha M.S., Dweik R., Zein N.N., Grove D., Brown J.M., Marshall S., Lopez R., Hanouneh I.A., Metabolomics studies identify novel diagnostic and prognostic indicators in patients with alcoholic hepatitis. World J. Hepatol., 2016, 8(10), 499–508.
  • 4. Barrios C., Beaumont M., Pallister T., Villar J., Goodrich J.K., Clark A., Pascual J., Ley R.E., Spector T.D., Bell J.T., Menni C., Gut-microbiota-metabolite axis in early renal function decline. PLoS One, 2015, 10(8), art. no. e0134311.
  • 5. Bordbar A., Mo M.L., Nakayasu E.S., Schrimpe-Rutledge A.C., Kim Y.M., Metz T.O., Jones M.B., Frank B.C., Smith R.D., Peterson S.N., Hyduke D.R., Adkins J.N., Palsson B.O., Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation. Mol. Syst. Biol., 2012, 8, art. no. 558.
  • 6. Chaleckis R., Murakami I., Takada J., Kondoh H., Yanagida M., Individual variability in human blood metabolites identifi es agerelated differences. Proc. Natl. Acad. Sci. USA, 2016, 113(16), 4252–4259.
  • 7. Collino S., Montoliu I., Martin F.P., Scherer M., Mari D., Salvioli S., Bucci L., Ostan R., Monti D., Biagi E., Brigidi P., Franceschi C., Rezzi S., Metabolic signatures of extreme longevity in northern Italian centenarians reveal a complex remodeling of lipids, amino acids, and gut microbiota metabolism. PLoS One, 2013, 8(3), art. no. e56564.
  • 8. da Silva V.R., Ralat M.A., Quinlivan E.P., DeRatt B.N., Garrett T.J., Chi Y.Y., Frederik Nijhout H., Reed M.C., Gregory J.F., Targeted metabolomics and mathematical modeling demonstrate that vitamin B-6 restriction alters one-carbon metabolism in cultured HepG2 cells. Am. J. Physiol. Endocrinol. Metab., 2014, 307(1), E93–101.
  • 9. D’Antona G., Ragni M., Cardile A., Tedesco L., Dossena M., Bruttini F., Caliaro F., Corsetti G., Bottinelli R., Carruba M.O., Valerio A., Nisoli E., Branched-chain amino acid supplementation promotes survival and supports cardiac and skeletal muscle mitochondrial biogenesis in middle-aged mice. Cell Metab., 2010, 12(4), 362–372.
  • 10. de Souza L.F., Jardim F.R., Sauter I.P., de Souza M.M., Bernard E.A., High glucose increases RAW 264.7 macrophages activation by lipoteichoic acid from Staphylococcus aureus. Clin. Chim. Acta., 2008, 398(1–2), 130–133.
  • 11. Ferrante R.J., Andreassen O.A., Jenkins B.G., Dedeoglu A., Kuemmerle S., Kubilus J.K., Kaddurah-Daouk R., Hersch S.M., Beal M.F., Neuroprotective effects of creatine in a transgenic mouse model of Huntington’s disease. J. Neurosci., 2000, 20(12), 4389– –4397.
  • 12. Gheni G., Ogura M., Iwasaki M., Yokoi N., Minami K., Nakayama Y., Harada K., Hastoy B., Wu X., Takahashi H., Kimura K., Matsubara T., Hoshikawa R., Hatano N., Sugawara K., Shibasaki T., Inagaki N., Bamba T., Mizoguchi A., Fukusaki E., Rorsman P., Seino S., Glutamate acts as a key signal linking glucose metabolism to incretin/cAMP action to amplify insulin secretion. Cell Rep., 2014, 9(2), 661–673.
  • 13. Gibbons H., Brennan L., Metabolomics as a tool in the identifi cation of dietary biomarkers. Proc. Nutr. Soc., 2017, 76(1), 42–53.
  • 14. Gleeson M., Bishop N.C., Modifi cation of immune responses to exercise by carbohydrate, glutamine and anti-oxidant supplements. Immunol. Cell Biol., 2000, 78, 554–561.
  • 15. Hou W., Zhong D., Zhang P., Li Y., Lin M., Liu G., Yao M., Liao Q., Xie Z., A strategy for the targeted metabolomics analysis of 11 gut microbiota-host co-metabolites in rat serum, urine and feces by ultra-high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A., 2016, 1429, 207–217.
  • 16. Ji P., Wei Y., Sun H., Xue W., Hua Y., Li P., Zhang W., Zhang L., Zhao H., Li J., Metabolomics research on the hepatoprotective effect of Angelica sinensis polysaccharides through gas chromatography-mass spectrometry. J Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 973, 45–54.
  • 17. Jung J., Kim S.H., Lee H.S., Choi G.S., Jung Y.S., Ryu D.H., Park H.S., Hwang G.S., Serum metabolomics reveals pathways and biomarkers associated with asthma pathogenesis. Clin. Exp. Allergy, 2013, 43(4), 425–433.
  • 18. Klysz D., Tai X., Robert P.A., Craveiro M., Cretenet G., Oburoglu L., Mongellaz C., Floess S., Fritz V., Matias M.I., Yong C., Surh N., Marie J.C., Huehn J., Zimmermann V., Kinet S., Dardalhon V., Taylor N., Glutamine-dependent α-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci. Signal., 2015, 8(396), ra97.
  • 19. Lezcano Meza D., Terán Ortiz L., Carvajal Sandoval G., Gutiérrez de la Cadena M., Terán Escandón D., Estrada Parra S., Effect of glycine on the immune response of the experimentally diabetic rats. Rev. Alerg. Mex., 2006, 53(6), 212–216.
  • 20. Li Z.Y., Ding L.L., Li J.M., Xu B.L., Yang L., Bi K.S, Wang Z.T., H-1-NMR and MS based metabolomics study of the intervention effect of curcumin on hyperlipidemia mice induced by highfat diet. PLoS One, 2015, 10, art. no. e0120950.
  • 21. Lieber C.S., Alcoholic liver disease: new insights in pathogenesis lead to new treatments. J. Hepatol., 2000, 32(1 Suppl), 113–128.
  • 22. Lin H.M., Barnett M.P., Roy N.C., Joyce N.I., Zhu S., Armstrong K., Helsby N.A., Ferguson L.R., Rowan D.D., Metabolomic analysis identifi es inflammatory and noninfl ammatory metabolic effects of genetic modifi cation in a mouse model of Crohn’s disease. J. Proteome Res., 2010, 9(4), 1965–1975.
  • 23. Liu G., Xiao L., Cao W., Fang T., Jia G., Chen X., Zhao H., Wu C., Wang J., Changes in the metabolome of rats after exposure to arginine and N-carbamylglutamate in combination with diquat, a compound that causes oxidative stress, assessed by 1 H NMR spectroscopy. Food Funct., 2016, 7(2), 964–974.
  • 24. Long L.H., Halliwell B., Artefacts in cell culture: α-Ketoglutarate can scavenge hydrogen peroxide generated by ascorbate and epigallocatechin gallate in cell culture media. Biochem. Biophys. Res. Commun., 2011, 406(1), 20–24.
  • 25. Manna S.K., Tanaka N., Krausz K.W., Haznadar M., Xue X., Matsubara T., Bowman E.D., Fearon E.R., Harris C.C., Shah Y.M., Gonzalez F.J., Biomarkers of coordinate metabolic reprogramming in colorectal tumors in mice and humans. Gastroenterology, 2014, 146(5), 1313–1324.
  • 26. McMorris T., Mielcarz G., Harris R.C., Swain J.P., Howard A., Creatine supplementation and cognitive performance in elderly individuals. Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn., 2007, 14(5), 517–528.
  • 27. Monteiro M.S., Carvalho M., Bastos M.L., Guedes de Pinho P., Metabolomics analysis for biomarker discovery: advances and challenges. Curr. Med. Chem., 2013, 20(2), 257–271.
  • 28. NINDS NET-PD Investigators., A randomized, double-blind, futility clinical trial of creatine and minocycline in early Parkinson disease. Neurology, 2006, 66(5), 664–671.
  • 29. Obi A.T., Stringer K.A., Diaz J.A., Finkel M.A., Farris D.M., Yeomans L., Wakefi eld T., Myers D.D. Jr., 1D-(1)H-nuclear magnetic resonance metabolomics reveals age-related changes in metabolites associated with experimental venous thrombosis. J. Vasc. Surg. Venous Lymphat. Disord., 2016, 4(2), 221–230.
  • 30. Pan Z., Raftery D., Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Anal. Bioanal. Chem., 2007, 387, 525–527.
  • 31. Pedersen H.K., Gudmundsdottir V., Nielsen H.B., Hyotylainen T., Nielsen T., Jensen B.A.H., Forslund K., Hildebrand F., Prifti E., Falony G., Le Chatelier E., Levenez F., Doré J., Mattila I., Plichta D.R., Pöhö P., Hellgren L.I., Arumugam M., Sunagawa S., Vieira-Silva S., Jørgensen T., Holm J.B., Trošt K., Consortium M., Kristiansen K., Brix S., Raes J., Wang J., Hansen T., Bork P., Brunak S., Oresic M., Ehrlich S.D., Pedersen O., Human gut microbes impact host serum metabolome and insulin sensitivity. Nature, 2016, 535(7612), 376–381.
  • 32. Perasso L., Spallarossa P., Gandolfo C., Ruggeri P., Balestrino M., Therapeutic use of creatine in brain or heart ischemia: available data and future perspectives. Med. Res. Rev., 2013, 33(2), 336–363.
  • 33. Ren M., Zhang S.H., Zeng X.F., Liu H., Qiao S.Y., Branchedchain amino acids are benefi cial to maintain growth performance and intestinal immune-related function in weaned piglets fed protein restricted diet. Asian-Australas. J. Anim. Sci., 2015, 28(12), 1742–1750.
  • 34. Richards S.E., Wang Y., Claus S.P., Lawler D., Kochhar S., Holmes E., Nicholson J.K., Metabolic phenotype modulation by caloric restriction in a lifelong dog study. J. Proteome Res., 2013, 12(7), 3117–3127.
  • 35. Schoeman J.C., Hou J., Harms A.C., Vreeken R.J., Berger R., Hankemeier T., Boonstra A., Metabolic characterization of the natural progression of chronic hepatitis B. Genome Med., 2016, 8, art. no. 64.
  • 36. Song X., Wang J., Wang P., Tian N., Yang M., Kong L., 1 H NMR- -based metabolomics approach to evaluate the effect of Xue-FuZhu-Yu decoction on hyperlipidemia rats induced by high-fat diet. J. Pharm. Biomed. Anal., 2013, 78–79, 202–210.
  • 37. Wang X.Y., Luo J.P., Chen R., Zha X.Q., Pan L.H., Dendrobium huoshanense polysaccharide prevents ethanol-induced liver injury in mice by metabolomic analysis. Int. J. Biol. Macromol., 2015, 78, 354–362.
  • 38. Wissmann P., Geisler S., Leblhuber F., Fuchs D., Immune activation in patients with Alzheimer’s disease is associated with high serum phenylalanine concentrations. J. Neurol. Sci., 2013, 329(1–2), 29–33.
  • 39. Worley B., Halouska S., Powers R., Utilities for quantifying separation in PCA/PLS-DA scores plots. Anal. Biochem., 2013, 433(2), 102–104.
  • 40. Wu B., Yan S., Lin Z., Wang Q., Yang Y., Yang G., Shen Z., Zhang W., Metabolomic study on ageing: NMR-based investigation into rat urinary metabolites and the effect of the total flavone of Epimedium. Mol. Biosyst., 2008, 4(8), 855–861.
  • 41. Xia J., Sinelnikov I.V., Han B., Wishart D.S., MetaboAnalyst 3.0—making metabolomics more meaningful, Nucleic Acids Res., 2015, 43, W251-W257.
  • 42. Xu J., Jiang H., Li J., Cheng K.K., Dong J., Chen Z., 1 H NMR- -based metabolomics investigation of copper-laden rat: a model of Wilson’s disease. PLoS One, 2015, 10, art. no. e0119654.
  • Xu X., Yan H., Zhang X., Structure and immuno-stimulating activities of a new 43.heteropolysaccharide from Lentinula edodes. J. Agric. Food Chem., 2012, 60(46), 11560–1156. 44. Xu X., Yang J., Luo Z., Zhang X., Lentinula edodes-derived polysaccharide enhances systemic and mucosal immunity by spatial modulation of intestinal gene expression in mice. Food Funct., 2015a, 6(6), 2068–2080.
  • 45. Xu X., Yang J., Ning Z., Zhang X., Lentinula edodes-derived polysaccharide rejuvenates mice in terms of immune responses and gut microbiota. Food Funct., 2015b, 6(8), 2653–2663.
  • 46. Xu X., Yang J., Ning Z., Zhang X., Proteomic analysis of intestinal tissues from mice fed with Lentinula edodes-derived polysaccharides. Food Funct., 2016, 7(1), 250–261.
  • 47. Xu X., Zhang X., Lentinula edodes-derived polysaccharide alters the spatial structure of gut microbiota in mice. PLoS One, 2015, 10(1), art. no. e0115037.
  • 48. Yap I.K., Li J.V., Saric J., Martin F.P., Davies H., Wang Y., Wilson I.D., Nicholson J.K., Utzinger J., Marchesi J.R., Holmes E., Metabonomic and microbiological analysis of the dynamic effect of vancomycin-induced gut microbiota modification in the mouse. J. Proteome Res., 2008, 7(9), 3718–3728.
  • 49. Zhu K.X., Nie S.P., Gong D.M., Xie M.Y., Effect of polysaccharide from Ganoderma atrum on the serum metabolites of type 2 diabetic rats. Food Hydrocoll., 2016, 53, 31–36.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-7570b527-2d77-4723-8370-1c19ae31b6a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.