PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 62 | 3 |

Tytuł artykułu

African Swine Fever Virus: a new old enemy of Europe

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
African swine fever (ASF) is a highly contagious viral disease of swine with a mortality rate approaching 100 percent. African Swine Fever Virus (ASFV) is a double-stranded DNA virus with a complex molecular structure. Its large genome, encoding multiple virulence factors, allows for efficient replication, which takes place predominantly in the cytoplasm of monocytes and macrophages. Also, ASFV has the ability to interfere with cell signalling pathways, which leads to various modulations in the synthesis profiles of interferon and other cytokines. Sustained viremia favours the persistence of virions in blood and tissues of the convalescents, and the extended circulation of ASFV within the herd. ASFV has been spreading in the Caucasus since 2007, and in 2014 reached the eastern territory of the European Union. Outbreaks pose an economical threat to native pig rearing, especially since a single point source may easily develop into an epizootic event. There is currently no effective vaccine nor treatment for ASF, and eradication is possible only by prevention or the slaughter of diseased animals. This review paper summarizes the current state of knowledge about ASFV.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

62

Numer

3

Opis fizyczny

p.161–167,fig.,ref.

Twórcy

autor
  • Division of Microbiology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
autor
  • Division of Microbiology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
  • Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
autor
  • Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland

Bibliografia

  • [1] Yáñez R.J., Rodríguez J.M., Nogal M.L., Yuste L., Enríquez C., Rodriguez J.F., Viñuela E. 1995. Analysis of the complete nucleotide sequence of African swine fever virus. Virology 208: 249-278.
  • [2] Chapman D.A.G., Tcherepanov V., Upton C., Dixon L.K. 2008. Comparison of the genome sequences of non-pathogenic and pathogenic African swine fever virus isolates. Journal of General Virology 89: 397-408.
  • [3] De Villiers E.P., Gallardo C., Arias M., da Silva M., Upton C., Martin R., Bishop R.P. 2010. Phylogenomic analysis of 11 complete African swine fever virus genome sequences. Virology 400: 128-136.
  • [4] Sogo J.M., Almendral J.M., Talavera A., Viñuela E. 1984. Terminal and internal inverted repetitions in African swine fever virus DNA. Virology 133: 271-275.
  • [5] González A., Talavera A., Almendral J.M., Viñuela E. 1986. Hairpin loop structure of African swine fever virus DNA. Nucleic Acids Research 14: 6835-6844.
  • [6] Costard S., Wieland B., de Glanville W., Jori F., Rowlands R., Vosloo W., Roger F., Pfeiffer D.U., Dixon L.K. 2009. African swine fever: how can global spread be prevented? Philosophical Transactions of the Royal Society B: Biological Sciences 364: 2683-2696.
  • [7] Sánchez-Vizcaíno J.M., Mur L., Sánchez-Matamoros A., Martínez-López B. 2014. African swine fever: new challenges and measures to prevent its spread. Paper presented at: The 82nd General Session of the World Assembly of OIE, 25–30 May 2014, Paris, France. www.oie.int/doc/ged/D13786.PDF
  • [8] Rahimi P., Sohrabi A., Ashrafihelan J., Edalat R., Alamdari M., Masoudi M., Mostofi S., Azadmanesh K. 2010. Emergence of African Swine Fever Virus, Northwestern Iran. Emerging Infectious Diseases 16: 1946-1948.
  • [9] OIE WAHID 2014: World Animal Health Information Database (WAHID) Interface [Internet]. Available from: http://www.oie.int/wahis/public.php?page=home
  • [10] Woźniakowski G., Kozak E., Kowalczyk A., Łyjak M., Pomorska-Mól M., Niemczuk K., Pejsak Z. 2016. Current status of African swine fever virus in a population of wild boar in eastern Poland (2014–2015). Archives of Virology 161:189-195.
  • [11] Pérez J., Fernández A.I., Sierra M.A., Herráez P., Fernández A., Martín de las Mulas J. 1998. Serological and immunohistochemical study of African swine fever in wild boar in Spain. Veterinary Record 143: 136-139.
  • [12] Björnheden L. 2011. A study of domestic pigs, wild suids and ticks as reservoirs for African swine fever virus in Uganda [dissertation]. Swedish University of Agricultural Sciences (SLU), Uppsala.
  • [13] Sánchez-Vizcaíno J.M. 2010. Early detection and contingency plans for African swine fever. Paper presented at: 24th Conference of the OIE Regional Commission for Europe, 20–24 September 2010, Astana,Kazakhstan.www.oie.int/doc/ged/D11831.pdf
  • [14] Oura C.A.L., Edwards L., Batten C.A. 2013. Virological diagnosis of African swine fever –comparative study of available tests. Virus Research 173: 150-158.
  • [15] Costard S., Mur L., Lubroth J., Sanchez-Vizcaino J.M., Pfeiffer D.U. 2013. Epidemiology of African swine fever virus. Virus Research 173: 191-197.
  • [16] Argilaguet J.M., Pérez-Martín E., Nofrarías M., Gallardo C., Accensi F., Lacasta A., Mora M., Ballester M., Galindo-Cardiel I., López-Soria S., Escribano J.M., Reche P. A., Rodríguez F. 2012. DNA vaccination partially protects against African swine fever virus lethal challenge in the absence of antibodies. PLoS ONE 7: e40942.
  • [17] Ivanov V., Efremov E.E., Novikov B.V., Balyshev V.M., Tsibanov S.Z., Kalinovsky T., Kolbasov D.V., Niedzwiecki A., Rath M. 2011. Vaccination with viral protein-mimicking peptides postpones mortality in domestic pigs infected by African swine fever virus. Molecular Medicine Reports 4: 395-401.
  • [18] Correia S., Ventura S., Parkhouse R.M. 2013. Identification and utility of innate immune system evasion mechanisms of ASFV. Virus Research 173: 87-100.
  • [19] Honda K., Takaoka A., Taniguchi T. 2006. Type I Interferon gene induction by the Interferon regulatory factor family of transcription factors. Immunity 25: 349-360.
  • [20] Le Bon A., Tough D.F. 2008. Type I interferon as a stimulus for cross-priming. Cytokine Growth Factor Reviews 19: 33-40.
  • [21] De Oliveira V.L., Almeida S.C.P., Soares H.R., Crespo A., Marshall-Clarke S., Parkhouse R.M.E. 2011. A novel TLR3 inhibitor encoded by African swine fever virus (ASFV). Archives of Virology 156: 597-609.
  • [22] Zhang F., Hopwood P., Abrams C.C., Downing A., Murray F., Talbot R., Archibald A., Lowden S., Dixon L.K. 2006. Macrophage transcriptional responses following in vitro infection with a highly virulent African swine fever virus isolate. Journal of Virology 80: 10514-10521.
  • [23] Kirkaldy A.A., Musonda A.C., Khanolkhar-Young S., Suneetha S., Lockwood D.N.J. 2003. Expression of CC and CXC chemokines and chemokine receptors in human leprosy skin lesions. Clinical and Experimental Immunology 134: 447-453.
  • [24] Sanchez-Cordón P.J., Romero-Trevejo J.L., Pedrera M., Sanchez-Vizcaino J.M., Bautista M.J., Gómez-Villamandos J.C. 2008. Role of hepatic macrophages during the viral haemorrhagic fever induced by African Swine Fever Virus. Histology and Histopathology 23: 683-691.
  • [25] Cubillos C., Gómez-Sebastian S., Moreno N., Nuñez M.C., Mulumba-Mfumu L.K., Quembo C.J., Heath L., Etter E.M.C., Jori F., Escribano J.M., Blanco E. 2013. African swine fever virus serodiagnosis: a general review with a focus on the analyses of African serum samples. Virus Research 173: 159-167.
  • [26] Gómez-Puertas P., Rodríguez F., Oviedo J.M., Ramiro-Ibáñez F., Ruiz-Gonzalvo F., Alonso C., Escribano J.M. 1996. Neutralizing antibodies to different proteins of African swine fever virus inhibit both virus attachment and internalization. Journal of Virology 70: 5689-5694.
  • [27] Gómez-Puertas P., Rodríguez F., Oviedo J.M., Brun A., Alonso C., Escribano J.M. 1998. The African swine fever virus proteins p54 and p30 are involved in two distinct steps of virus attachment and both contribute to the antibody-mediated protective immune response. Virology 243: 461-471.
  • [28] Gallardo C., Blanco E., Rodríguez J.M., Carrascosa A.L., Sanchez-Vizcaino J.M. 2006. Antigenic properties and diagnostic potential of African swine fever virus protein pp62 expressed in insect cells. Journal of Clinical Microbiology 44: 950-956.
  • [29] Kollnberger S.D., Gutierrez-Castañeda B., Foster-Cuevas M., Corteyn A., Parkhouse R. M.E. 2002. Identification of the principal serological immunodeterminants of African swine fever virus by screening a virus cDNA library with antibody. Journal of General Virology 83: 1331-1342.
  • [30] Breese S.S.Jr, DeBoer C.J. 1966. Electron microscope observations of African swine fever virus in tissue culture cells. Virology 28: 420-428.
  • [31] Ballester M., Rodríguez-Cariño C., Pérez M., Gallardo C., Rodríguez J.M., Salas M.L., Rodríguez F. 2011. Disruption of nuclear organization during the initial phase of African swine fever virus infection. Journal of Virology 85: 8263-8269.
  • [32] García-Beato R., Salas M.L., Viñuela E., Salas J. 1992. Role of the host cell nucleus in the replication of African swine fever virus DNA. Virology 188: 637-649.
  • [33] Rojo G., García-Beato R., Viñuela E., Salas M.L., Salas J. 1999. Replication of African swine fever virus DNA in infected cells. Virology 257: 524-536.
  • [34] Dixon L.K., Chapman D.A.G., Netherton C.L., Upton C. 2013. African swine fever virus replication and genomics. Virus Research 173: 3-14.
  • [35] Rojo G., Chamorro M., Salas M.L., Viñuela E., Cuezva J.M., Salas J. 1998. Migration of mitochondria to viral assembly sites in African swine fever virusinfected cells. Journal of Virology 72: 7583-7588.
  • [36] Jouvenet N., Windsor M., Rietdorf J., Hawes P., Monaghan P., Way M., Wileman T. 2006. African swine fever virus induces filopodia-like projections at the plasma membrane. Cell Microbiology 8: 1803-1811.
  • [37] Sánchez E.G., Quintas A., Nogal M., Castelló A., Revilla Y. 2013. African swine fever virus controls the host transcription and cellular machinery of protein synthesis. Virus Research 173: 58-75.
  • [38] Johnston J.A., Ward C.L., Kopito R.R. 1998. Aggresomes: a cellular response to misfolded proteins. Journal of Cell Biology 143: 1883-1898.
  • [39] Heath C.M., Windsor M., Wileman T. 2001. Aggresomes resemble sites specialized for virus assembly. Journal of Cell Biology 153: 449-455.
  • [40] Castelló A., Quintas A., Sánchez E.G., Sabina P., Nogal M., Carrasco L., Revilla Y. 2009. Regulation of host translational machinery by African swine fever virus. PLoS Pathogens 5: e1000562.
  • [41] Alonso C., Galindo I., Cuesta-Geijo M.A., Cabezas M., Hernaez B., Muñoz-Moreno R. 2013. African swine fever virus-cell interactions: from virus entry to cell survival. Virus Research 173: 42-57.
  • [42] Netherton C.L., Wileman T.E. 2013. African swine fever virus organelle rearrangements. Virus Research 173: 76-86.
  • [43] Netherton C., Rouiller I., Wileman T. 2004. The subcellular distribution of multigene family 110 proteins of African swine fever virus is determined by differences in C-terminal KDEL endoplasmic reticulum retention motifs. Journal of Virology 78: 3710-3721.
  • [44] Andrés G., García-Escudero R., Simón-Mateo C., Viñuela E. 1998. African swine fever virus is enveloped by a two-membraned collapsed cisterna derived from the endoplasmic reticulum. Journal of Virology 72: 8988-9001.
  • [45] Netherton C.L., McCrossan M.C., Denyer M., Ponnambalam S., Armstrong J., Takamatsu H.H., Wileman T.E. 2006. African swine fever virus causes microtubule-dependent dispersal of the trans-golgi network and slows delivery of membrane protein to the plasma membrane. Journal of Virology 80: 11385-11392.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-74b76898-ae26-4e59-83a2-124935c7792c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.