PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 42 | 3 |

Tytuł artykułu

Temperature and somatic growth effects on otolith growth of larval Atlantic menhaden, Brevoortia tyrannus (Actinopterygii: Clupeiformes: Clupeidae)

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background. If a link exists between somatic and otolith growth, otolith size and microstructure analysis can be a useful tool in studies of larval fish growth and condition—methods like growth back-calculation or marginal increment width analysis can be employed. Because significance of that link may vary among species and can be additionally modified by temperature, the aim of the present paper is to evaluate how sagittal otoliths of Atlantic menhaden responded to somatic growth and temperature. Materials and Methods. Larval Atlantic menhaden, Brevoortia tyrannus (Latrobe, 1802) (age range: 20–120 days; length range: 14–35 mm SL), collected during 3 years were evaluated for length-at-age and groups of the shortest and longest-at-age individuals (8% of sampled population in each group) were used in the analyses. Similarly, otolith size-at-age estimated from sagittae length was evaluated and then compared with the earlier estimated growth indices of larvae. Results. Otolith growth rate (OGR) indicated growth differences among analysed larvae. Additionally, temperature effect on OGR independent of somatic growth was detected for larvae that were short-at-age (i.e., the slow growth group). For the fast grow group, temperature effect on OGR was insignificant. Conclusion. Back-calculation of growth from otoliths of larval and early juvenile Atlanticmenhaden is justified but less accurate estimates can be expected for the slowest growing individuals due to the independent temperature effect on otolith growth.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

42

Numer

3

Opis fizyczny

p.215–222,fig.,ref.

Twórcy

autor
  • Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Gdynia, Poland
autor
  • NOAA Narragansett Laboratory, Narragansett, RI 02882, USA

Bibliografia

  • Aguilera B., Catalán I.A., Palomera I., Olivar M.P. 2009.Otolith growth of European sea bass (Dicentrarchus labrax L.)larvae fed with constant or varying food levels. Scientia Marina 73 (1): 173–182.DOI: 10.3989/scimar.2009.73n1173
  • Ahrenholz D.W., Fitzhugh G.R., Rice J.A., Nixon S.W.,Pritchard W.C. 1995. Confidence of otolith ageing through the juvenile stage for Atlantic menhadan, Brevoortia tyrannus.Fishery Bulletin 93 (2): 209–216.
  • Ahrenholz D.W., Squires D.D., Rice J.A., Nixon S.W.,Fitzhugh G.R. 2000. Periodicity of increment formation In otoliths of overwintering postlarval and prejuvenile Atlantic menhaden, Brevoortia tyrannus. Fishery Bulletin 98 (2):421–426.
  • Anderson J.T. 1988. A review of size dependent survival during pre-recruit stages of fishes in relation to recruitment.Journal of Northwest Atlantic Fisheries Science 8: 55–66.
  • Barber M.C., Jenkins G.P. 2001. Different effects of food and temperature lead to decoupling of short-term otolith and somatic growth rates in juvenile King George whiting. Journal of Fish Biology 58 (5): 1320–1330.DOI: 10.1111/j.1095-8649.2001.tb02289.x
  • Bradford M.J., Geen G.H. 1992. Growth estimates from otolith increment widths of juvenile chinook salmon (Oncorhynchus tshawytscha) reared in changing environments.Journal of Fish Biology 41 (5): 825–832.DOI: 10.1111/j.1095-8649.1992.tb02710.x
  • Campana S.E. 2005. Otolith science entering the 21st century.Marine and Freshwater Research 56 (5): 485–495.DOI: 10.1071/MF04147
  • Campana S.E., Neilson J.D. 1985. Microstructure of fish otoliths. Canadian Journal of Fisheries and Aquatic Science 42 (5): 1014–1032.DOI: 10.1139/f85-127
  • Clemmesen C.M. 1988. A RNA and DNA fluorescence technique to evaluate the nutritional condition of individual marine fish larvae. Meeresforschung 32: 134–143.
  • Fey D.P. 2001. Differences in temperature conditions and somatic growth rate of larval and early juvenile spring-spawned herring from the Vistula Lagoon, Baltic Sea manifested in the otolith to fish size relationship. Journal of Fish Biology 58 (5): 1257–1273. DOI: 10.1111/j.1095-8649.2001.tb02284.x.
  • Fey D.P. 2005. Is the marginal otolith increment width a reliable recent growth index for larval and juvenile herring? Journal of Fish Biology 66 (6): 1692–1703.DOI: 10.1111/j.0022-1112.2005.00716.x
  • Fey D.P. 2006. The effect of temperature and somatic growth on otolith growth: the discrepancy between two clupeid species from a similar environment. Journal of Fish Biology 69 (3): 794–806.DOI: 10.1111/j.1095-8649.2006.01151.x
  • Fey D.P., Hare J.A. 2005. Length correction of larval and earlyjuvenile Atlantic menhaden (Brevoortia tyrannus) after preservation in alcohol. Fishery Bulletin 103 (4): 725–727.
  • Fey D.P., Hare J.A. 2008. Fluctuating asymmetry in the otoliths of larval Atlantic menhaden Brevoortia tyrannus (Latrobe)—a condition indicator? Journal of Fish Biology 72 (1): 121–130.DOI: 10.1111/j.1095-8649.2007.01684.x
  • Finstad A.G. 2003, Growth backcalculation based on otoliths incorporating an age effect: adding an interaction term.Journal of Fish Biology 62 (5): 1222–1225.DOI: 10.1046/j.1095-8649.2003.00102.x
  • Folkvord A., Johannessen A., Moksness E. 2004.Temperature-dependent otolith growth in Norwegian spring-spawning herring (Clupea harengus L.) larvae.Sarsia 89 (5): 297–310.DOI: 10.1080/00364820410002532
  • Folkvord A., Ystanes L., Johannessen A., Moksness E. 1996.RNA : DNA ratios and growth of herring (Clupea harengus) larvae reared in mesocosms. Marine Biology 126 (6):591–602. DOI: 10.1007/BF00351326
  • Fitzhugh G.R., Nixon S.W., Ahrenholz D.W., Rice J.A. 1997.Temperature effects on otolith microstructure and birth month estimation from otolith increment patterns in Atlantic menhaden. Transactions of the American Fisheries Society 126 (4): 579–593.
  • Francis R.I.C. 1990. Back-calculation of fish length: a critical review. Journal of Fish Biology 36 (6): 883–902.DOI: 10.1111/j.1095-8649.1990.tb05636.x
  • Fuiman L.A., Werner R.G. 2002. Fishery science: The unique contributions of early life stages. Blackwell Science,Oxford, UK.
  • Fukuda N., Kuroki M., Shinoda A., Yamada Y., Okamura A.,Aoyama J., Tsukamoto K. 2009. Influence of water temperature and feeding regime on otolith growth in Anguilla Japonia glass eels and elvers: does otolith growth cease at low temperatures? Journal of Fish Biology 74 (9): 1915–1933.DOI: 10.1111/j.1095-8649.2009.02287.x
  • Hare J.A., Cowen R.K. 1995. Effect of age, growth rate, and ontogeny on the otolith size – fish size relationship in bluefish,Pomatomus saltatrix, and the implications for back-calculation of size in fish early life history stages. Canadian Journal of Fisheries and Aquatic Sciences 52 (9):1909–1922.DOI: 10.1139/f95-783
  • Hare J.A., Cowen R.K. 1997. Size, growth, development, and survival of the planktonic larvae of Pomatomus saltatrix (Pisces: Pomatomidae). Ecology 78 (8): 2415–2431.DOI: 10.1890/0012-9658(1997)078[2415:SGDASO]2.0.CO;2
  • Håkanson J.L. 1989. Condition of larval anchovy (Engraulis mordax) in the Southern California Bight, as measured through lipid analysis. Marine Biology 102 (2): 153–159.DOI: 10.1007/BF00428275
  • Houde E.D. 1987. Fish early life dynamics recruitment variability.American Fisheries Society Symposium 2: 17–29.
  • Maillet G.L., Checkley D.M. jr. 1990. Effects of starvation on the frequency of formation and width of growth increments In sagittae of laboratory-reared Atlantic menhaden Brevoortia tyrannus larvae. Fishery Bulletin 88 (1): 155–165.
  • Maillet G.L., Checkley D.M.jr. 1991. Storm-related variation in the growth rate of otoliths of larval Atlantic menhaden Brevoortia tyrannus: a time series analysis of biological and physical variables and implications for larva growth and mortality. Marine Ecology Progress Series 79 (1): 1–16.DOI: 10.3354/meps079001
  • McCormick M.I., Molony B.W. 1992. Effects of feeding history on the growth characteristics of a reef fish at settlement.Marine Biology 114 (1): 165–173.DOI: 10.1007/BF00350866
  • Meekan M.G., Fortier L. 1996. Selection for fast growth during the larval life of Atlantic cod Gadus morhua on the Scotian Shelf. Marine Ecology Progress Series 137 (1–3):25–37.DOI: 10.3354/meps137025
  • Molony B.W., Choat J.H. 2006. Otolith increment widths and somatic growth rate: the presence of a time-lag. Journal of Fish Biology 37 (4): 541–551.DOI: 10.1111/j.1095-8649.1990.tb05887.x
  • Morita K.,Matsuishi T. 2001. A new model of growth back-calculation incorporating age effect based on otoliths. Canadian Journal of Fisheries and Aquatic Sciences 58 (9): 1805–1811. DOI: 10.1139/f01-126
  • Mosegaard H., Svedäng H., Taberman K. 1988. Uncoupling of somatic and otolith growth rates in arctic char (Salvelinus alpinus)as an effect of differences in temperature response.Canadian Journal of Fisheries and Aquatic Sciences 45 (9): 1514–1524.DOI: 10.1139/f88-180
  • Mugiya Y., Oka H. 1991. Biochemical relationship between otolith and somatic growth in the rainbow trout Oncorhynchus mykiss: consequence of starvation, resume feeding, and diel variations. Fishery Bulletin 89 (2): 239–245.
  • Neat F.C., Wright P.J., Fryer R.J. 2008. Temperature effects on otolith pattern formation in Atlantic cod Gadus morhua.Journal of Fish Biology 73 (10): 2527–2541.DOI: 10.1111/j.1095-8649.2008.02107.x
  • Oozeki Y., Watanabe Y. 2000. Comparison of somatic growth and otolith increment growth in laboratory-reared larvae of Pacific saury, Cololabis saira, under different temperature conditions. Marine Biology 136 (2): 349–359.DOI: 10.1007/s002270050693
  • Palmer A.R. 1994. Fluctuating asymmetry analyses: A primer. Pp. 335–364. In: Markow T.A. (ed.) Developmental instability:Its origins and evolutionary implications. Kluwer,Dordrecht, the Netherlands.
  • Paperno R., Targett T.E., Grecay P.A. 1997. Daily growth increments in otoliths of juvenile weakfish, Cynoscion regalis: experimental assessment of changes in increment width with changes in feeding rate, growth, and condition factor. Fishery Bulletin 95 (3): 521–529.
  • Radtke R., Fey D.P. 1996. Environmental effects on primary increment formation in the otoliths of newly-hatched Arctic charr. Journal of Fish Biology 48 (6): 1238–1255.DOI: 10.1111/j.1095-8649.1996.tb01818.x
  • Secor D.H., Dean J.M. 1992. Comparison of otolith-based backcalculation methods to determine individual growth historie of larval striped bass, Morone saxatilis. Canadian Journal of Fisheries and Aquatic Sciences 49 (7): 1439–1454.DOI: 10.1139/f92-159
  • Secor D.H., Dean J.M., Baldevarona R.B. 1989. Comparison of otolith growth and somatic growth in larval and juvenile fishes based on otolith length/fish length relationships.Rapports et Procés-Verbaux des Réunions du Conseil International pour l’Exploration de la Mer 191: 431–438.
  • Sirois P., Lecomte F., Dodson J.J. 1998. An otolith-based backcalculation method to account for time-varying growth rate In rainbow smelt (Osmerus mordax) larvae. Canadian Journal of Fisheries and Aquatic Sciences 55 (12): 2662–2671.DOI: 10.1139/cjfas-55-12-2662
  • Sogard S.M. 1991. Interpretation of otolith microstructure In juvenile winter flounder (Pseudopleuronectes americanus):ontogenetic development, daily increment validation, and somatic growth relationships. Canadian Journal of Fisheries and Aquatic Sciences 48 (10): 1862–1871.DOI: 10.1139/f91-220
  • Stegmann P.M., Quinlan J.A., Werner F.E., Blanton B.O.,Berrien P. 1999. Atlantic menhaden recruitment to a southern estuary: defining potential spawning regions. Fisheries Oceanography 8 (Suppl. s2): 111–123.DOI: 10.1046/j.1365-2419.1999.00022.x
  • Takasuka A., Oozeki Y., Aoki I., Kimura R., Kubota H.,Sugisaki H., Akamine T. 2008. Growth effect on the otolith and somatic size relationship in Japanese anchovy and sardine larvae. Fisheries Science 74 (2): 308–313.DOI: 10.1111/j.1444-2906.2008.01519.x
  • Takasuka A., Oozeki Y., Kimura R., Kubota H., Aoki I.2004. Growth-selective predation hypothesis revisited for larval anchovy in offshore waters: cannibalism by juveniles versus predation by skipjack tunas. Marine Ecology Progress Series 278: 297–302.DOI: 10.3354/meps278297
  • Theilacker G.H. 1986. Starvation-induced mortality of young sea-caught jack-mackerel, Trachurus symmetricus, determined with histological and morphological methods.Fishery Bulletin 84 (1): 1–17.
  • Thorrold S.R., Hare J.A. 2002. Otolith applications in reef fish ecology. Pp. 243–264. In: Sale P.F. (ed.) Advances in the ecology of fishes on coral reefs. Academic Press, San Diego,California, USA.
  • Tonkin Z., King A.J., Ramsey D.S.L. 2008. Otolith increment width responses of juvenile Australian smelt Retropinna semoni to sudden changes in food levels: the importance of feeding history. Journal of Fish Biology 73 (4): 853–860.DOI: 10.1111/j.1095-8649.2008.01976.x
  • Quinlan J.A., Blanton B.O.,Miller T.J.,Werner F.E. 1999. From spawning grounds to the estuary: using linked individual-based and hydrodynamic models to interpret patterns and processes In the oceanic phase of Atlanticmenhaden Brevoortia tyrannus life history. Fisheries Oceanography 8 (Suppl. s2): 224–246.DOI: 10.1046/j.1365-2419.1999.00033.x
  • Wang Y.-T., Tzeng W.-N. 1999. Differences in growth rate among cohorts of Encrasicholina punctifer and Engraulis japonicus larvae in the coastal waters off Tanshui River Estuary, Taiwan, as indicated by otolith microstructure analysis. Journal of Fish Biology 54 (5): 1002–1016.DOI: 10.1111/j.1095-8649.1999.tb00853.x
  • Warlen S.M. 1992. Age, growth, and size distribution of larval Atlantic menhaden off North Carolina. Transactions of the American Fisheries Society 121 (5): 588–598.DOI: 10.1577/1548-8659(1992)121<0588:AGASDO>2.3.CO;2
  • Warlen S.M. 1994. Spawning time and recruitment dynamics of larval Atlantic menhadan, Brevooria tyrannus, into a North Carolina estuary. Fishery Bulletin 92 (2): 420–433.
  • Wright P.J. 1991. The influence of metabolic rate on otolith increment width in Atlantic salmon parr, Salmo salar L.Journal of Fish Biology 38 (6): 929–933.DOI: 10.1111/j.1095-8649.1991.tb03632.x

Uwagi

PL
Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-74873808-9ddb-4ae8-9ec1-f50c4dfa1a0a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.