Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 74 | 1 |
Tytuł artykułu

Expression pattern of transcription factor SOX2 in reprogrammed oligodendrocyte precursor cells and microglias: Implications for glial neurogenesis

Treść / Zawartość
Warianty tytułu
Języki publikacji
Oligodendrocyte Precursor Cells (OPCs) can revert to multipotential Neural Stem-Like Cells (NSLCs) which can self-renew and give rise to neurons, astrocytes and oligodendrocytes when exposed to certain extracellular signals. This is a significant progress to understand developmental neurobiology, in particularly the possibility of converting glia to stem cells for the treatment of neurological disorders. Similarly, recent findings revealed that brain-resident microglias (MGs) can be converted to multipotential state through de-differentiation. In this study, we investigated the role of SRY (sex-determining region)-box 2 (SOX2), a high-mobility group DNA binding domain transcription factor, in the reprogramming of OPCs and MGs and molecular pathways involved in these process. Immunocytochemical analyses demonstrated that expression of SOX2 was upregulated in the reprogrammed MGs and OPCs as well as other neural stem cell markers such as CD15 and nestin. Western blot and double immunostaining analyses further confirmed that activation of bone morphogenetic proteins (BMPs) signaling partnering with SOX2 might be one of the molecular pathways involved in lineage reprogramming of OPCs which is also true in the reversion of MGs. Taken together, these results indicated that lineage reprogramming of OPCs and MGs are both controlled by the same signaling pathway and glia can be reprogrammed in culture by inducing expression of neurogenic transcription factors to transgress their lineage restriction and can stably acquire a neuronal identity. Our results suggested innovative perspectives for cell therapy with glia cells.
Słowa kluczowe
Opis fizyczny
  • Department of Anatomy and Cytoneurobiology Unit, Medical College of Soochow University, Suzhou, China
  • Department of Anatomy, Jiangsu University, Zhenjiang, China
  • Department of Anatomy and Cytoneurobiology Unit, Medical College of Soochow University, Suzhou, China
  • Department of Anatomy and Cytoneurobiology Unit, Medical College of Soochow University, Suzhou, China
  • Department of Anatomy and Cytoneurobiology Unit, Medical College of Soochow University, Suzhou, China
  • Alvarez-Buylla A, García-Verdugo JM, Tramontin AD (2001) A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2: 287-293.
  • Armstrong RC (1998) Isolation and characterization of immature oligodendrocyte lineage cells. Methods 16: 282-292.
  • Berninger B, Costa MR, Koch U, Schroeder T, Sutor B, Grothe B, Gotz M (2007) Functional properties of neu¬rons derived from in vitro reprogrammed postnatal astroglia. J Neurosci 27: 8654-8664.
  • Bylund M, Andersson E, Novitch BG, Muhr J (2003) Vertebrate neurogenesis is counteracted by Sox1-3 activ¬ity. Nat Neurosci 6:1162-1168.
  • Cavallaro M, Mariani J, Lancini C, Latorre E, Caccia R, Gullo F, Valotta M, DeBiasi S, Spinardi L, Ronchi A, Wanke E, Brunelli S, Favaro R, Ottolenghi S, Nicolis SK (2008) Impaired generation of mature neurons by neural stem cells from hypomorphic SOX2 mutants. Development 135: 541-557.
  • Doetsch F (2003) The glial identity of neural stem cells. Nat Neurosci 6: 1127-1134.
  • Graham V, Khudyakov J, Ellis P, Pevny L (2003) SOX2 functions to maintain neural progenitor identity. Neuron 39: 749-765.
  • Heins N, Malatesta P, Cecconi F, Nakafuku M, Tucker KL, Hack MA, Chapouton P, Barde YA, Gotz M (2002) Glial cells generate neurons: the role of the transcription factor Pax6. Nat Neurosci 5: 308-315.
  • Hu JG, Zhang YX, Qi Q, Wang R, Shen L, Zhang C, Xi J, Zhou JS, Lu HZ (2012) Expression of BMP-2 and BMP-4 proteins by type-1 and type-2 astrocytes induced from neural stem cells under different differentiation condi¬tions. Acta Neurobiol Exp (Wars) 72: 95-101.
  • Jaenisch R, Young R (2008) Stem cells, the molecular cir¬cuitry of pluripotency and nuclear reprogramming. Cell 132: 567-582.
  • Kondo T, Raff M (2000) Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289: 1754-1757.
  • Kondo T, Raff M (2004) Chromatin remodeling and histone modification in the conversion of oligodendrocyte pre¬cursors to neural stem cells. Genes Dev 18: 2963-2972.
  • Kondo M, Cubillo E, Tobiume K, Shirakihara T, Fukuda N, Suzuki H, Shimizu K, Takehara K, Cano A, Saitoh M, Miyazono K (2004) A role for Id in the regulation of TGF-beta-induced epithelial-mesenchymal transdifferen¬tiation. Cell Death Differ 11: 1092-1101.
  • Kriegstein A, and Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32: 149-184.
  • Lyssiotis CA, Walker J, Wu C, Kondo T, Schultz PG, Wu X (2007) Inhibition of histone deacetylase activity induces developmental plasticity in oligodendrocyte precursor cells. Proc Natl Acad Sci U S A 104: 14982-14987.
  • Ma DK, Ming GL, Song H (2005) Glial influences on neural stem cell development: cellular niches for adult neuro¬genesis. Curr Opin Neurobiol 15: 514-520.
  • Mehler MF, Mabie PC, Zhu G, Gokhan S, Kessler JA (2000) Developmental changes in progenitor cell responsiveness to bone morphogenetic proteins differentially modulate progressive CNS lineage fate. Dev Neurosci 22: 74-85.
  • Morrens J, Van-Den-Broeck W, Kempermann G (2012) Glial cells in adult neurogenesis. Glia 60: 159-174.
  • Nakashima K, Takizawa T, Ochiai W, Yanagisawa M, Hisatsune T, Nakafuku M, Miyazono K, Kishimoto T, Kageyama R, Taga T (2001) BMP2-mediated alteration in the developmental pathway of fetal mouse brain cells from neurogenesis to astrocytogenesis, Proc Natl Acad Sci U S A 98: 5868-5873.
  • Nicholas CR, Kriegstein AR (2010) Regenerative medicine: Cell reprogramming gets direct. Nature 463: 1031-1032.
  • Niidome T, Matsuda S, Nonaka H, Akaike A, Kihara T, Sugimoto H (2008) A molecular pathway involved in the generation of microtubule-associated protein 2-positive cells from microglia. Biochem Biophys Res Commun 370: 184-188.
  • Rex M, Orme A, Uwanogho D, Tointon K, Wigmore PM, Sharpe PT, Scotting PJ (1997) Dynamic expression of chicken Sox2 and Sox3 genes in ectoderm induced to form neural tissue. Dev Dyn 209: 323-332.
  • Robel S, Berninger B, Götz M (2011) The stem cell potential of glia: lessons from reactive gliosis. Nat Rev Neurosci 12: 88-104.
  • Sypecka J, Sarnowska A, Gadomska-Szablowska I, Lukomska B, Domanska-Janik K (2013) Differentiation of glia-com- mitted NG2 cells:the role of factors released from hip¬pocampus and spinal cord. Acta Neurobiol Exp (Wars) 73: 116-129.
  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663-676.
  • Yokoyama A, Yang L, Itoh S, Mori K, Tanaka J (2004) Microglia, a potential source of neurons, astrocytes, and oligodendrocytes. Glia 45: 96-104.
  • Yokoyama A, Sakamoto A, Kameda K, Imai Y, Tanaka J (2006) NG2 proteoglycan- expressing microglia as mul¬tipotent neural progenitors in normal and patholog¬ic brains. Glia 53: 754-768.
  • Zappone MV, Galli R, Catena R, Meani N, De Biasi S, Mattei E, Tiveron C, Vescovi AL, Lovell-Badge R, Ottolenghi S, Nicolis SK (2000) Sox2 regulatory sequences direct expression of a (beta)-geo transgene to telencephalic neu¬ral stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells. Development 127: 2367-2382.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.