Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 62 | 4 |

Tytuł artykułu

Discovery of chemosynthesis-based association on the Cretaceous basal leatherback sea turtle from Japan


Treść / Zawartość

Warianty tytułu

Języki publikacji



We report a Late Cretaceous chemosynthetic community fueled by decomposing basal leatherback sea turtle on the ocean floor in the western Pacific. The fossil association representing this community has been recovered from the matrix of a concretion containing a single carapace of Mesodermochelys sp. from Late Cretaceous outer shelf to upper slope deposit of northern Hokkaido, Japan. The carapace displays boreholes most likely performed by boring bivalves, and is associated with molluscan shells, mainly Provanna cf. nakagawensis and Thyasira tanabei. Since this association is similar to fauna already known from Late Cretaceous hydrocarbon seeps, sunken wood, and plesiosaur-falls in Hokkaido, it is suggested that all types of chemosynthesis-based communities in the Late Cretaceous of western Pacific may have belonged to the same regional pool of animals and were not yet fully differentiated into three independent types of communities as it is known today. This finding also indicates that the sulfophilic stage of the vertebrate-fall communities was supported not only by plesiosaur carcasses, which were previously reported, but also by sea turtle carcasses. It highlights the possibility of surviving vertebrate-fall communities through the end-Cretaceous mass extinction event on carcasses of sea turtles which are the only large marine vertebrates surviving this event.

Słowa kluczowe








Opis fizyczny




  • Alfaro-Lucas, J.M., Shimabukuro, M., Ferreira, G.D., Kitazato, H., Fujiwara, Y., and Sumida, P.Y.G. 2017. Bone-eating Osedax worms (Annelida: Siboglinidae) regulate biodiversity of deep-sea whale-fall communities. Deep-Sea Research Part II [published online].
  • Belaústegui, Z., de Gibert, J.M., Domènech, R., Muñiz, F., and Martinell, J. 2012. Clavate borings in a Miocene cetacean skeleton from Tarragona (NE Spain) and the fossil record of marine bone bioerosion. Palaeogeography, Palaeoclimatology, Palaeoecology 323–325: 68–74.
  • Chen, C., Ogura, T., Hirayama, H., Watanabe, H.K., Miyazaki, J., and Okutani, T. 2016 First seep-dwelling Desbruyeresia (Gastropoda: Abyssochrysoidea) species discovered from a serpentinite-hosted seep in the Southeastern Mariana Forearc. Molluscan Research 36: 277–284.
  • Danise, S. and Higgs, N.D. 2015. Bone-eating Osedax worms lived on Mesozoic marine reptile deadfalls. Biology Letters 11 (4): 20150072.
  • Danise, S., Twitchett, R.J., and Matts, K. 2014. Ecological succession of a Jurassic shallow-water ichthyosaur fall. Nature Communications 5: 4789.
  • Dell, R.K. 1987. Mollusca of the family Mytilidae (Bivalvia) associated with organic remains from deep water off New Zealand, with revisions of the genera Adipicola Dautzenberg, 1927 and Idasola Iredale, 1915. National Museum of New Zealand Records 3: 17–36.
  • Deming, J.W., Reysenbach, A.L., Macko, S.A., and Smith, C.R. 1997. Evidence for the microbial basis of a chemoautotrophic invertebrate community at a whale fall on the deep seafloor: Bone-colonizing bacteria and invertebrate endosymbionts. Microscopy Research and Technique 37: 162–170.
  • Desbruyères, D., Segonzac, M., and Bright, M. 2006. Handbook of DeepSea Hydrothermal Vent Fauna. 544 pp. Biologiecentrum der Ober österreichische Landesmuseum, Linz.
  • Dick, D.G. 2015. An ichthyosaur carcass-fall community from the Posidonia Shale (Toarcian) of Germany. Palaios 30: 353–361.
  • Distel, D.L., Baco, A.R., Chuang, E., Morrill, W., Cavanaugh, C., and Smith, C.R. 2000. Do mussels take wooden steps to deep-sea vents? Nature 403: 725–726.
  • Dufour, S.C. 2005. Gill anatomy and the evolution of symbiosis in the bivalve family Thyasiridae. Biological Bulletin 208: 200–212.
  • Hashimoto, W., Nagao, S., Kanno, S., Asaga, M., Otomo, R., Koyakai, T., Tono, S., Kitamura, K., Taira, K., and Wajima, M. 1967. Geology and Underground Resources in Nakagawa-cho, Hokkaido [in Japanese]. 48 pp. Nakagawa-cho, Nakagawa.
  • Houssaye, A. 2013. Bone histology of aquatic reptiles: what does it tell us about secondary adaptation to an aquatic life? Biological Journal of the Linnean Society 108: 3–21.
  • Hryniewicz, K., Amano, K., Jenkins, R.G., and Kiel, S. 2017. Thyasirid bivalves from Cretaceous and Paleogene cold seeps. Acta Palaeontologica Polonica 62: 705–728.
  • Jenkins, R.G. and Hikida, Y. 2011. Carbonate sediments microbially induced by anaerobic oxidation of methane in hydrocarbon-seeps. In: V. Tewari and J. Seckbach (eds.), Stromatolites: Interaction of Microbes with Sediments, 591–605. Springer, Dordrecht.
  • Jenkins, R.G., Kaim, A., Hikida, Y., and Tanabe, K. 2007. Methane-fluxdependent lateral faunal changes in a Late Cretaceous chemosymbiotic assemblage from the Nakagawa area of Hokkaido, Japan. Geobiology 5: 127–139.
  • Johnson, S.B., Warén, A., Lee, R.W., Kano, Y., Kaim, A., Davis, A., Strong, E.E., and Vrijenhoek, R.C. 2010. Rubyspira, new genus and two new species of bone-eating deep-sea snails with ancient habits. The Biological Bulletin 219: 166–177.
  • Kaim, A., Hryniewicz, K., Little, C.T.S., and Nakrem, H.A. 2017. Gastropods from the Late Jurassic–Early Cretaceous seep deposits in Spitsbergen, Svalbard. Zootaxa 4329: 351–374.
  • Kaim, A., Jenkins, R.G., and Hikida, Y. 2009. Gastropods from Late Cretaceous Omagari and Yasukawa hydrocarbon seep deposits in the Nakagawa area, Hokkaido, Japan. Acta Palaeontologica Polonica 54: 463–490.
  • Kaim, A., Jenkins, R.G., and Warén, A. 2008a. Provannid and provannid-like gastropods from the Late Cretaceous cold seeps of Hokkaido (Japan) and the fossil record of the Provannidae (Gastropoda: Abyssochrysoidea). Zoological Journal of the Linnean Society 154: 421–436.
  • Kaim, A., Jenkins, R.G., Tanabe, K., and Kiel, S. 2014. Mollusks from late Mesozoic seep deposits, chiefly in California. Zootaxa 3861: 401–440.
  • Kaim, A., Kobayashi, Y., Echizenya, H., Jenkins, R.G., and Tanabe, K. 2008b. Chemosynthesis-based associations on Cretaceous plesiosaurid carcasses. Acta Palaeontologica Polonica 53: 97–104.
  • Kaim, A., Tucholke, B.E., and Warén, A. 2012. A new Late Pliocene large provannid gastropod associated with hydrothermal venting at Kane Megamullion, Mid-Atlantic Ridge. Journal of Systematic Palaeontology 10: 423–433.
  • Kiel, S. 2008. Fossil evidence for micro- and macrofaunal utilization of large nekton-falls: Examples from early Cenozoic deep-water sediments in Washington State, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 267: 161–174.
  • Kiel, S. 2015. Did shifting seawater sulfate concentrations drive the evolution of deep-sea methane-seep ecosystems? Proceedings of the Royal Society B 282: 20142908.
  • Kiel, S. 2016. A biogeographic network reveals evolutionary links between deep-sea hydrothermal vent and methane seep faunas. Proceedings of the Royal Society B 283: 20162337.
  • Kiel, S., Amano, K., and Jenkins, R.G. 2008. Bivalves from Cretaceous coldseep deposits on Hokkaido, Japan. Acta Palaeontologica Polonica 53: 525–537.
  • Kiel, S., Amano, K., Hikida, Y., and Jenkins, R.G. 2009. Wood-fall associations from Late Cretaceous deep-water sediments of Hokkaido, Japan. Lethaia 42: 74–82.
  • Kiel, S. and Goedert, J.L. 2006. Deep-sea food bonanzas: early Cenozoic whale-fall communities resemble wood-fall rather than seep communities. Proceedings of the Royal Society B-Biological Sciences 273: 2625–2631.
  • Kiel, S., Kahl, W.-A., and Goedert, J.L. 2011. Osedax borings in fossil marine bird bones. Naturwissenschaften 98: 51–55.
  • Kiel, S., Krystyn, L., Demirtaş, F., Koşun, E., and Peckmann, J. 2017. Late Triassic mollusk-dominated hydrocarbon-seep deposits from Turkey. Geology 45: 751–754.
  • Lorion, J., Duperron, S., Gros, O., Cruaud, C., and Samadi, S. 2009. Several deep-sea mussels and their associated symbionts are able to live both on wood and on whale falls. Proceedings of the Royal Society of London B: Biological Sciences 276: 177–185.
  • Lorion, J., Kiel, S., Faure, B., Kawato, M., Ho, S.Y.W., Marshall, B., Tsuchida, S., Miyazaki, J.-I., and Fujiwara, Y. 2013. Adaptive radiation of chemosymbiotic deep-sea mussels. Proceedings of the Royal Society of London B: Biological Sciences 280: 20131243.
  • Marshall, B.A. 1994. Deep-sea gastropods from the New Zealand region associated with recent whale bones and an Eocene turtle. Nautilus 108: 1–8.
  • Miyazaki, J.-I., Martins, L.d.O., Fujita, Y., Matsumoto, H., and Fujiwara, Y. 2010. Evolutionary process of deep-sea Bathymodiolus mussels. Plos One 5 (4): e10363.
  • Motani, R. 2009. The evolution of marine reptiles. Evolution: Education and Outreach 2: 224–235.
  • Nakajima, Y., Houssaye, A., and Endo, H. 2014. Osteohistology of the Early Triassic ichthyopterygian reptile Utatsusaurus hataii: Implications for early ichthyosaur biology. Acta Palaeontologica Polonica 59: 343–352.
  • Sato, T., Konishi, T., Hirayama, R., and Caldwell, M. 2012. A review of the Upper Cretaceous marine reptiles from Japan. Cretaceous Research 37: 319–340.
  • Smith, C.R. and Baco, A.R. 2003. Ecology of whale falls at the deep-sea floor. Oceanography and Marine Biology 41: 311–354.
  • Smith, C.R., Baco, A.R., and Glover, A.G. 2002. Faunal succession on replicate deep-sea whale falls: time scales and vent-seep affinities. Cahiers de Biologie Marine 43: 293–297.
  • Smith, C.R., Glover, A.G., Treude, T., Higgs, N.D., and Amon, D.J. 2015. Whale-fall ecosystems: recent insights into ecology, paleoecology, and evolution. Marine Science 7: 571–596.
  • Smith, C.R., H, K., Wheatcroft, R.A., Jumars, P.A., and Deming, J.W. 1989. Vent fauna on whale remains. Nature 341: 27–28.
  • Takahashi, A., Hikida, Y., Jenkins, R.G., and Tanabe, K. 2007. Stratigraphy and megafauna of the Upper Cretaceous Yezo Supergroup in the Teshionakagawa area, northern Hokkaido, Japan. Bulletin of the Mikasa City Museum, Natural Science 11: 25–59.
  • Takahashi, A., Hirano, H., and Sato, T. 2003. Stratigraphy and fossil assemblage of the Upper Cretaceous in the Teshionakagawa area, Hokkaido, northern Japan [in Japanese with English abstract]. Journal of the Geological Society of Japan 109: 77–95.
  • Takashima, R., Kawabe, F., Nishi, H., Moriya, K., Wani, R., and Ando, H. 2004. Geology and stratigraphy of forearc basin sediments in Hokkaido, Japan: Cretaceous environmental events on the north-west Pacific margin. Cretaceous Research 25: 365–390.
  • Thewissen, J.G., Hussain, S., and Arif, M. 1994. Fossil evidence for the origin of aquatic locomotion in archaeocete whales. Science 263: 210–211.
  • Tresguerres, M., Katz, S., and Rouse, G.W. 2013. How to get into bones: proton pump and carbonic anhydrase in Osedax boneworms. Proceedings of the Royal Society B: Biological Sciences 280: 20130625.
  • Treude, T., Smith, C.R., Wenzhöfer, F., Carney, E., Bernardino, A.F., Hannides, A.K., Krüger, M., and Boetius, A. 2009. Biogeochemistry of a deep-sea whale fall: sulfate reduction, sulfide efflux and methanogenesis. Marine Ecology Progress Series 382: 1–21.
  • Vrijenhoek, R.C., Johnson, S.B., and Rouse, G.W. 2009. A remarkable diversity of bone-eating worms (Osedax; Siboglinidae; Annelida). BMC Biology 7 (1): 74.
  • Warén, A. and Bouchet, P. 1986. Four new species of Provanna Dall (Prosobranchia, Cerithiacea?) from East Pacific hydrothermal sites. Zoologica Scripta 15: 157–164.
  • Zug, G.R. and Parham, J.F. 1996. Age and growth in leatherback turtles, Dermochelys coriacea (Testudines: Dermochelyidae): a skeletochronological analysis. Chelonian Conservation and Biology 2: 244–249.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.