PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 2 |

Tytuł artykułu

Tree bark, a valuable source of information on air quality

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Tree bark has been proven to be a valuable source of information on air pollution. Bark has a large absorbent surface thanks to its deeply furrowed structure. Through the ability to accumulate atmospheric particulate matter (PM), tree bark enables the identification and mapping of organic and inorganic air pollutants. The first study of air quality using tree bark dates back to the second half of the 20th century and such studies are constantly being developed today. Reports published almost every year present the potential of using tree bark of different tree species for monitoring atmospheric pollution. This article presents scientific evidence proving the possibility of using bark in the process of assessing air quality and also describes the main directions of research in this field.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

2

Opis fizyczny

P.453-466,fig.ref.

Twórcy

  • Department of Ecology, Biogeochemistry and Environmental Protection, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
autor
  • Department of Ecology, Biogeochemistry and Environmental Protection, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland

Bibliografia

  • 1. Böhm P., Wolterbeek H., Verburg T., Musılek L. The use of tree bark for environmental pollution monitoring in the Czech Republic. Environ. Pollut. 102 (2), 243, 1998.
  • 2. Kuang Y.W., Zhou G.Y., WEN D.Z., Liu S.Z. Heavy metals in bark of Pinus massoniana (Lamb.) as an indicator of atmospheric deposition near a smeltery at Qujiang, China. Environ. Environ Sci. Pollut. R. 14 (4), 270, 2007.
  • 3. Samecka-Cymerman A., Stankiewicz A., Kolon K., Kempers A.J. Self-organizing feature map (neural networks) as a tool to select the best indicator of road traffic pollution (soil, leaves or bark of Robinia pseudoacacia L.). Environ. Pollut. 157 (7), 2061, 2009.
  • 4. Sawidis T., Breuste J., Mitrovic M., Pavlovic P., Tsigaridas K. Trees as bioindicator of heavy metal pollution in three European cities. Environ. Pollut. 159 (12), 3560, 2011.
  • 5. Cocozza C., Ravera S., Cherubini P., Lombardi F., Marchetti M., Tognetti R. Integrated biomonitoring of airborne pollutants over space and time using tree rings, bark, leaves and epiphytic lichens. Urban For. Urban Gree. 17, 177, 2016.
  • 6. Kalinowska A. Acid rains, pollution knows no boundaries. Ecology- the choice of the future. Editions Spotkania wyd. II; 132, Warszawa, 1994. [in Polish].
  • 7. HARRISON R.M., YIN J. Particulate matter in the atmosphere: which particle properties are important for its effects on health? Sci. Total Environ. 249 (1) 85, 2000.
  • 8. Schelle E., Rawlins B.G., Lark R.M., Webster R., Staton I., McLeod C.W. Mapping aerial metal deposition in metropolitan areas from tree bark: a case study in Sheffield, England. Environ. Pollut. 155 (1), 164, 2008.
  • 9. Drava G., Brignole D., Giordani P., Minganti V. Urban and industrial contribution to trace elements in the atmosphere as measured in Holm oak bark. Atmos. Environ. 144, 370, 2016.
  • 10. Gurgatz B.M., Carvalho-Oliveira R., de Oliveira D.C., Joucoski E., Antoniaconi G., do Nascimento Saldiva P.H., Reis R.A. Atmospheric metal pollutants and environmental injustice: A methodological approach to environmental risk analysis using fuzzy logic and tree bark. Ecol. Indic. 71, 428, 2016.
  • 11. Odabasi M., Tolunay D., Kara M., Falay E.O., Tuna G., Altiok H., Elbir T. Investigation of spatial and historical variations of air pollution around an industrial region using trace and macro elements in tree components. Sci. Total Environ. 550, 1010, 2016.
  • 12. Guéguen F., Stille P., Millet M. Air quality assessment by tree bark biomonitoring in urban, industrial and rural environments of the Rhine Valley: PCDD/Fs, PCBs and trace metal evidence. Chemosphere. 85 (2), 195, 2011.
  • 13. Olatunji O.S., Osibanjo O., Fatoki O.S., Ximba B.J., Opeolu B.O. Selected heavy metals as indices of atmospheric pollution in African locust bean (Parkia biglobosa) tree barks. Am. J. Environ. Sci. 12 (1), 48, 2016.
  • 14. Conte E.R., Widom E., Kuentz D. Characterization and transport modeling of uranium particle from Fernald area tree bark. J. Radioanal. Nucl. Chem. 307 (3), 1675, 2016.
  • 15. Dockery D.W., Pope C.A. Acute respiratory effects of particulate air pollution. Annu. Rev. Publ. Health. 15 (1), 107, 1994.
  • 16. Seaton A., Godden D., MacNee W., Donaldson K. Particulate air pollution and acute health effects. Lancet. 345 (8943), 176, 1995.
  • 17. WHO (World Health Organization). Review of Evidence on Health Aspects of Air Pollution - REVIHAAP Project. Technical Report. World Health Organization, Regional Office for Europe, Copenhagen, Denmark, 2013.
  • 18. Kabata-Pendias A. Soil - plant transfer of trace elements- an environmental issue. Geoderma. 122 (2), 143, 2004.
  • 19. EL- HASAN T., Al- Omari H., Jiries A., Al- Nasir F., Cypress tree (Cupressus semervirens L.) bark as an indicator for heavy metal pollution in the atmosphere of Amman City, Jordan. Environ. Int. 28 (6), 513, 2002.
  • 20. Ernst W.H.O. The use of higher plants as bioindicators. Trace metals and other contaminants in the environment; Markert B.A., Breure A.M., Zechmeister H.G. Eds., Elsevier, Vol. 6: Bioindicators and biomonitors, Principles, Concepts and Applications; 423, Netherlands, 2003.
  • 21. Skye E. Lichens as biological indicators of air pollution. Annu. Rev. Phytopathol. 17 (1), 325, 1979.
  • 22. De Wit T. Lichens as indicators for air quality. Environ. Monit. Assess. 3 (3-4), 273, 1983.
  • 23. Grodzińska K., Szarek-Łukaszewska G. Response of mosses to the heavy metal deposition in Poland-an overview. Environ. Pollut. 114 (3), 443, 2001.
  • 24. Van Dobben H.F., Wolterbeek H.T., Wamelink G.W.W., Ter Braak C.J.F. Relationship between epiphytic lichens, trace elements and gaseous atmospheric pollutants. Environ. Pollut. 112 (2), 163, 2001.
  • 25. Migaszewski Z.M., Gałuszka A., Pasławski P. Polynuclear aromatic hydrocarbons, phenols, and trace metals in selected soil profiles and plant bioindicators in the Holy Cross Mountains, South-Central Poland. Environ. Int. 28 (4), 303, 2002.
  • 26. Samecka-Cymerman A., Kosior G., Kempers A.J. Comparison of the moss Pleurozium schreberi with needles and bark of Pinus sylvestris as biomonitors of pollution by industry in Stalowa Wola (southeast Poland). Ecotox. Environ. Safe. 65 (1), 108, 2006.
  • 27. Hissler C., Stille P., Krein A., Geagea M.L., Perrone T., Probst J.L., Hoffmann L. Identifying the origins of local atmospheric deposition in the steel industry basin of Luxembourg using the chemical and isotopic composition of the lichen Xanthoria parietina. Sci. Total Environ. 405 (1), 338, 2008.
  • 28. Cocozza C., Ravera S., Cherubini P., Lombardi F., Marchetti M., Tognetti R. Integrated biomonitoring of airborne pollutants over space and time using tree rings, bark, leaves and epiphytic lichens. Urban For. Urban Gree. 17, 177, 2016.
  • 29. Grodzińska K. Acidity of tree bark as a bioindicator of forest pollution in southern Poland. Water Air Soil Poll. 8 (1), 3, 1977.
  • 30. Grodzińska K. Tree bark- sensitive biotest for environment acidification. Environ. Int. 2 (3), 173, 1979.
  • 31. Santamaria J.M., Martin A. Tree bark as a bioindicator of air pollution in Navarra, Spain. Water Air Soil Poll. 98 (3-4), 381, 1997.
  • 32. Chrzan A. Necrotic bark of common pine (Pinus sylvestris L.) as a bioindicator of environmental quality. Environ. Sci. Pollut. R. 22 (2), 1066, 2015.
  • 33. Catinon M., Ayrault S., Clocchiatti R., Boudouma O., Asta J., Tissut M., Ravanel P. The anthropogenic atmospheric elements fraction: a new interpretation of elemental deposits on tree barks. Atmos. Environ. 43 (5), 1124, 2009.
  • 34. Catinon M., Ayrault S., Boudouma O., Asta J., Tissut M., Ravanel P. Atmospheric element deposit on tree barks: The opposite effects of rain and transpiration.Ecol. Indic. 14 (1), 170, 2012.
  • 35. Minganti V., Drava G., Giordani P., Malaspina P., Modenesi P. Human contribution to trace elements in urban areas as measured in Holm oak (Quercus ilex L.) bark. Environ. Sci. Pollut. R. 23 (12), 12467, 2016.
  • 36. Martin R.E., Crist J.B. Elements of bark structure and terminology. Wood Fiber Sci. 2, (3), pp. 269-279, 2007.
  • 37. Janta R., Chantara S., Inta A., Kawashima M., Satake K. Levels of Road Traffic Heavy Metals in Tree Bark Layers of Cassia fistula Tree. IJESD. 7 (5), 385, 2016.
  • 38. Bellis D., Ma R., Bramall N., McLeod C. W., Chapman N., Satake K. Airborne uranium contamination- as revealed through elemental and isotopic analysis of tree bark. Environ. Pollut. 114 (3), 383, 2001.
  • 39. Berlizov A.N., Blum O.B., Filby R.H., Malyuk I.A., Tryshyn V.V. Testing applicability of black poplar (Populus nigra L.) bark to heavy metal air pollution monitoring in urban and industrial regions. Sci. Total Environ. 372 (2), 693, 2007.
  • 40. Škrbić B., Milovac S., Matavulj M. Multielement profiles of soil, road dust, tree bark and wood- rotten fungi collected at various distances from high- frequency road in urban area. Ecol. Indic. 13 (1), 168, 2012.
  • 41. Chiarantini L., Rimondi V., Benvenuti M., Beutel M.W., Costagliola P., Gonnelli C., Paolieri M. Black pine (Pinus nigra) barks as biomonitors of airborne mercury pollution. Sci. Total Environ. 569, 105, 2016.
  • 42. Staxäng B. Acidification of bark of some deciduous trees. Oikos. 20, 224, 1969.
  • 43. Härtel O., Grill D. Die Leitfähigkeit von Fichtenborken - Extrakten als empfindlicher Indikator für Luftverunreinigungen. Eur. J. Forest Pathol. 2 (4), 205, 1972 [in German].
  • 44. Poikolainen J. Sulphur and heavy metal concentrations in Scots pine bark in northern Finland and the Kola Peninsula. Water Air Soil Poll. 93 (1-4), 395, 1997.
  • 45. Steindor K., Palowski B., Góras P., Nadgórska-Socha A. Assessment of bark reaction of select tree species as an indicator of acid gaseous pollution. Pol. J. Environ. Stud. 20 (3), 619, 2011.
  • 46. Lötschert W., Köhm H.J. Characteristics of tree bark as an indicator in high- immission areas. Oecologia. 27 (1), 47, 1977.
  • 47. Lötschert W. Immissions analysen im Raum Frankfurt unter Verwendung pflan- zlicher Biodinidkatoren. Verh. Ges. Ökol. 11, 277, 1983 [in German].
  • 48. Yilmaz R., Sakcali S., Yarci C., Aksoy A., Ozturk M. Use of Aesculus hipp.ocastanum L. as a biomonitor of heavy metal pollution. Pak. J. Bot. 38 (5), 1519, 2006.
  • 49. Olajire A.A., Ayodele E.T. Study of atmospheric pollution levels by trace elements analysis of tree bark and leaves. B. Chem. Soc. Ethiopia. 17 (1), 11, 2003.
  • 50. Wen S., Yang F., Li J.G., Gong Y., Zhang X.L., Hui Y., WU Y.N., ZHAO Y.F., XU Y. Polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) monitored by tree bark in an E- waste recycling area. Chemosphere. 74 (7), 981, 2009.
  • 51. Samecka-Cymerman A., Kolon K., Kempers A.J. Taxus baccata as a bioindicator of urban environmental pollution. Pol. J. Environ. Stud. 20 (4), 1021, 2011.
  • 52. Guéguen F., Stille P., Geagea M.L., Boutin R. Atmospheric pollution in an urban environment by tree bark biomonitoring- Part I: Trace element analysis. Chemosphere. 86 (10), 1013, 2012.
  • 53. Guéguen F., Stille P., Geagea M. L., Perrone T., Chabaux F. Atmospheric pollution in an urban environment by tree bark biomonitoring- Part II: Sr, Nd and Pb isotopic tracing. Chemosphere. 86 (6), 641, 2012.
  • 54. Barbeş L., Bărbulescu A., Rădulescu C., Stihi C., Chelarescu E.D. Determination of heavy metals in leaves and bark of Populus nigra L. by atomic absorption spectrometry. Rom. Rep. Phys. 66 (3), 877, 2014.
  • 55. Cutillas- Barreiro L., Ansias- Manso L., Fernández- Calviño D., Arias- Estévez M., Nóvoa- Muñoz J.C., Fernández- Sanjurjo M.J., ALVARES- RODRIGUEZ E., Núñez- Delgado A. Pine bark as bio-adsorbent for Cd, Cu, Ni, Pb and Zn: Batch-type and stirred flow chamber experiments. J. Environ. Manage. 144, 258, 2014.
  • 56. Gupta J., Gupta A., Gupta A.K. Determination of trace metals in the stem bark of Moringa oleifera Lam. In t. J. Chem. Stud. 2 (4), 39, 2014.
  • 57. Čekstere G., Laivinš M., Osvalde A. Chemical Composition of Scots Pine Bark as a Bioindicator of Environmental Quality in Riga, Latvia. Proceedings of the Latvian Academy of Sciences. Section B: Natural, Exact, and Applied Sciences. 69 (3), (696), 87, 2015.
  • 58. Wang T., Yu J., Han S., Wang Y., Jiang G. Levels of short chain chlorinated paraffins in pine needles and bark and their vegetation- air partitioning in urban areas. Environ. Pollut. 196, 309, 2015.
  • 59. Mandiwana K.L., Resane T., Panichev N., Ngobeni P. The application of tree bark as bio- indicator for the assessment of Cr (VI) in air pollution. J. Hazard. Mater. 137 (2), 1241, 2006.
  • 60. Moreira T.C.L., de Oliveira R.C., Amato L.F.L., Kang C.M., Saldiva P.H.N., Saiki M. Intra- urban biomonitoring: Source apportionment using tree barks to identify air pollution sources. Environ. Int. 91, 271, 2016.
  • 61. Bellis D.J., Satake K., Tsunoda K., McLeod C.W. Environmental monitoring of historical change in arsenic deposition with tree bark pockets. J. Environ. Monitor. 5 (4), 671, 2003.
  • 62. Wolterbeek H.T., Kuik P., Verburg T.G., Wamelink G.W.W., Van Dobben H. Relations between sulphate, ammonia, nitrate, acidity and trace element concentrations in tree bark in the Netherlands. Environ. Monit. Assess. 40 (2), 185, 1996.
  • 63. Schulz H., Popp P., Huhn G., Stärk H.J., Schüürmann G. Biomonitoring of airborne inorganic and organic pollutants by means of pine tree barks. I. Temporal and spatial variations. Biomonitoring of atmospheric pollution (with emphasis on trace elements)-BioMAP. Proceedings of an international workshop organized by the International Atomic Energy Agency in cooperation with the Instituto Tecnologico e Nuclear and held in Lisbon, Portugal, 21-24 September 1997. 149, Austria, 2000.
  • 64. Schulz H., Schulz U., Huhn G., Schürmann G. Biomonitoring of airborne inorganic and organic pollutants by means of pine tree barks. II. Deposition types and impact levels. Biomonitoring of Atmospheric Pollution. Biomonitoring of atmospheric pollution (with emphasis on trace elements)- BioMAP. Proceedings of an international workshop organized by the International Atomic Energy Agency in co-operation with the Instituto Tecnologico e Nuclear and held in Lisbon, Portugal, 21-24 September 1997. 159, Austria, 2000.
  • 65. Pacheco A.M.G., Freitas M.C., Barros L.I.C., Figueira R. Investigating tree bark as an air- pollution biomonitor by means of neutron activation analysis. J. Radioanal. Nucl. Chem. 249 (2), 327, 2001.
  • 66. Pacheco A.M.G., Barros L.I.C., Freitas M.C., Reis M.A., Hipólito C., Oliveira O.R. An evaluation of olive-tree bark for the biological monitoring of airborne trace-elements at ground level. Environ. Pollut. 120 (1), 79, 2002.
  • 67. Pacheco A.M.G., Freitas M.C., Baptista M.S., Vasconcelos M.T.S.D., Cabral J.P. Elemental levels in tree-bark and epiphytic-lichen transplants at a mixed environment in mainland Portugal, and comparisons with an in situ lichen. Environ. Pollut. 151 (2), 326, 2008.
  • 68. Saarela K.E., Harju L., Lill J.O., Heselius S.J., Rajander J., Lindroos A. Quantitative elemental analysis of dry- ashed bark and wood samples of birch, spruce and pine from south- western Finland using PIXE. Acta Acad. Abo. Ser. B. 65 (4), 1, 2005.
  • 69. Patrick G.J., Farmer J.G. A lead isotopic assessment of tree bark as a biomonitor of contemporary atmospheric lead. Sci. Total Environ. 388 (1), 343, 2007.
  • 70. Cosma C., Iurian A.R., Incze R., Kovacs T., Žunić Z.S. The use of tree bark as long term biomonitor of ¹³⁷Cs deposition. J. Environ. Radioactiv. 153, 126, 2016.
  • 71. Hites R.A. Polybrominated diphenyl ethers in the environment and in people: a meta-analysis of concentrations. Environ. Sci. Technol. 38 (4), p45, 2004.
  • 72. Wang Q., Zhao Y., Yan D., Yang L., Li Z., Huang B. Historical records of airborne polycyclic aromatic hydrocarbons by analyzing dated corks of the bark pocket in a Longpetiole Beech tree. Environ. Sci. Technol. 38 (18), 4739, 2004.
  • 73. Hermanson M.H., Johnson G.W. Polychlorinated biphenyls in tree bark near a former manufacturing plant in Anniston, Alabama. Chemosphere. 68 (1), 191, 2007.
  • 74. Orecchio S., Gianguzza A., Culotta L. Absorption of polycyclic aromatic hydrocarbons by Pinus bark: analytical method and use for environmental pollution monitoring in the Palermo area (Sicily, Italy). Environ. Res. 107 (3), 371, 2008.
  • 75. Zhao Y., Yang L., Wang Q. Modeling persistent organic pollutant (POP) partitioning between tree bark and air and its app.lication to spatial monitoring of atmospheric POPs in mainland China. Environ. Sci. Technol. 42 (16), 6046, 2008.
  • 76. Falay E.O., Tuna G., Altiok H., Kara M., Dumanoglu Y., Bayram A., Odabasi M. Spatial variation of polycyclic aromatic hydrocarbons (PAHs) in air, soil and tree components in Iskenderun industrial region, Turkey. Int. J. Chem. Environ. Biol. Sci. 1 (2), 263, 2013.
  • 77. Zhou L., Dong L., Huang Y., Shi S., Zhang L., Zhang X., YANG W., Li L. Spatial distribution and source app.ortionment of polycyclic aromatic hydrocarbons (PAHs) in Camphor (Cinnamomum camphora) tree bark from Southern Jiangsu, China. Chemosphere. 107, 297, 2014.
  • 78. Zhou L., Dong L., Huang Y., Shi S., Zhang L., Zhang X., Yang W. Tree bark as a biomonitor for the determination of polychlorinated biphenyls and polybrominated diphenyl ethers from Southern Jiangsu, China: levels, distribution, and possible sources. Environ. Monitor. Assess. 187 (9), 1, 2015.
  • 79. Hermanson, M.H., Johnson, G.W. Polychlorinated dibenzofurans and dibenzo-p-dioxin in tree bark from an industrialized area: What the 2, 3, 7, 8-Cl substituted congeners tell us, and what is missing. J. Environ. Prot. 7 (3), 351, 2016.
  • 80. Li Q., Lu Y., Jin J., Li G., Li P., He C., Wang Y. Comparison of using polyurethane foam passive samplers and tree bark samples from Western China to determine atmospheric organochlorine pesticide. J. Environ. Sci. 41, 90, 2016.
  • 81. RAUERT C., HARNER T. A preliminary investigation into the use of Red Pine (Pinus resinosa) tree cores as historic passive samplers of POPs in outdoor air. Atmos. Environ. 140, 514, 2016.
  • 82. Hermanson M.H., Hann R., Johnson G.W. Polychlorinated biphenyls in tree bark near former manufacturing and incineration facilities in Sauget, Illinois, USA. Environ. Sci. Technol. 50 (12), 6207, 2016.
  • 83. Yuan H., Jin J., Bai Y., Li Q., Wang Y., Hu J. Concentrations and distributions of polybrominated diphenyl ethers and novel brominated flame retardants in tree bark and human hair from Yunnan Province, China. Chemosphere. 154, 319, 2016.
  • 84. Salamova A., Hites R.A. Brominated and chlorinated flame retardants in tree bark from around the globe. Environ. Sci. Technol. 47 (1), 349, 2012.
  • 85. He C., Jin J., Li G., Wang Y. Exchange of organohalogen compounds between air and tree bark in the Yellow River region. Chemosphere. 153, 478, 2016.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-73c309d4-ee7c-4553-be4a-b4e7559c4be0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.