PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 65 | 4 |
Tytuł artykułu

Isolation and characterization of exopolysaccharide-producing Lactobacillus plantarum SKT109 from Tibet Kefir

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Lactobacillus plantarum SKT109 was isolated and identified from Tibet Kefir, and the exopolysaccharride (EPS)-producing properties of the strain were evaluated. Growth of strain SKT109 in a semi-defined medium at 37°C increased the viscosity of the medium, corresponding to production of an EPS (58.66 mg/L). The EPS was isolated and purified, and it was shown to consist of fructose and glucose in an approximate molar ratio of 3:1, with an average molecular weight of 2.1x106 Da. The aqueous solution of EPS at 1% (w/v) exhibited shear thinning behavior. Microstructural studies of the EPS demonstrated a highly compact structure with a smooth surface, facilitating formation of film by the polymer; the EPS was composed of many different sizes of spherical lumps with tendency to form molecular aggregates. Studies on the milk fermentation characteristics of L. plantarum SKT109 showed that the strain survived well in fermented milk with counts about 8.0 log cfu/g during 21 days of storage at 4°C. The use of the EPS-producing strain improved the rheology of the fermented milk without causing post-acidification during storage. Particularly, L. plantarum SKT109 improved the fermented milk flavor by increasing the concentration of characteristic flavor compounds and eliminating those with disgusting flavors. The results of the present study indicated that EPS-producing L. plantarum SKT109 could serve as a promising candidate for further exploitation in fermented foods.
Wydawca
-
Rocznik
Tom
65
Numer
4
Opis fizyczny
p.269-279,fig.,ref.
Twórcy
autor
  • Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, No.11 Fu-Cheng Road, Hai-Dian District ,100048 Beijing, P.R.China
  • School of Biological and Agricultural Engineering, Jilin University, 130022 Changchun, P.R.China
autor
  • Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, No.11 Fu-Cheng Road, Hai-Dian District ,100048 Beijing, P.R.China
autor
  • Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, No.11 Fu-Cheng Road, Hai-Dian District ,100048 Beijing, P.R.China
autor
  • Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, No.11 Fu-Cheng Road, Hai-Dian District ,100048 Beijing, P.R.China
autor
  • Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, No.11 Fu-Cheng Road, Hai-Dian District ,100048 Beijing, P.R.China
autor
  • Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, No.11 Fu-Cheng Road, Hai-Dian District ,100048 Beijing, P.R.China
  • School of Biological and Agricultural Engineering, Jilin University, 130022 Changchun, P.R.China
Bibliografia
  • 1. Ahmed Z., Wang Y., Anjum N., Ahmad A., Khan S.T., Characterization of exopolysaccharide produced by Lactobacillus kefirano-faciens ZW3 isolated from Tibet kefir - Part II. Food Hydrocoll., 2013, 30, 343-350.
  • 2. Ayala-Hernández I., Hassan A.N., Goff H.D., Corredig M., Effect of protein supplementation on the rheological characteristics of milk permeates fermented with exopolysaccharide-producing Lactococcus lactis subsp. cremoris. Food Hydrocoll., 2009, 23, 1299-1304.
  • 3. Behare P.V, Singh R., Tomar S.K., Nagpal R., Kumar M., Moha-nia D., Effect of exopolysaccharide-producing strains of Streptococcus thermophiles on technological attributes of fat-free lassi. J. Dairy Sci., 2010, 93, 2874-2879.
  • 4. Brinques G.B., Ayub M.A.Z., Effect of microencapsulation on survival of Lactobacillus plantarum in simulated gastrointestinal conditions, refrigeration, and yogurt. J. Food Eng., 2011, 103, 123-128.
  • 5. Bujalance C., Jimenez-Valera M., Moreno E., Ruiz-Bravo A., A selective differential medium for Lactobacillus plantarum. J. Microbiol. Meth., 2006, 66, 572-575.
  • 6. Casarotti S.N., Monteiro D.A., Moretti M.M.S., Penna A.L.B., Influence of the combination of probiotic cultures during fermentation and storage of fermented milk. Food Res. Int., 2014, 59, 67-75.
  • 7. Degeest B., Mozzi F., De Vuyst L., Effect of medium composition and temperature and pH changes on exopolysaccharide yields and stability during Streptococcus thermophilus LY03 fermentations. Int. J. Food Microbiol., 2002, 79, 161-174.
  • 8. de los Reyes-Gavilán C.G., Suárez A., Fernández-García M., Margolles A., Gueimonde M., Ruas-Madiedo P., Adhesion of bile-adapted Bifidobacterium strains to the HT29-MTX cell line is modified after sequential gastrointestinal challenge simulated in vitro using human gastric and duodenal juices. Res. Microbiol., 2011, 162, 514-519.
  • 9. Doleyres Y., Schaub L., Lacroix C., Comparison of the functionality of exopolysaccharides produced in situ or added as bioin-gredients on fermented milk properties. J. Dairy Sci., 2005, 88, 4146-4156.
  • 10. Faber E.J., Kamerling J.P., Johannes F.G., Vliegenthart J.F.G., Structure of the extracellular polysaccharide produced by Lacto-bacillus delbrueckii subsp. bulgaricus 291. Carbohydr. Res., 2001, 331, 183-194.
  • 11. Folkenberg D.M., Dejmek P., Skriver A., Guldager H.S., Ipsen R., Sensory and rheological screening of exopolysaccharide producing strains of bacterial yoghurt cultures. Int. Dairy J., 2006, 16, 111-118.
  • 12. Gentes M.C., St-Gelais D., Turgeon S.L., Gel formation and rheological properties of fermented milk with in situ exopolysaccharide production by lactic acid bacteria. Dairy Sci. Technol., 2011, 91, 645-661.
  • 13. Georgieva R., Iliev I., Haertlé T., Chobert J., Ivanova I., Danova S., Technological properties of candidate probiotic Lactobacillus plantarum strains. Int. Dairy J., 2009, 19, 696-702.
  • 14. Górska S., Jachymek W, Rybka J., Strus M., Heczko P.B., Gamian A., Structural and immunochemical studies of neutral exopolysaccharide produced by Lactobacillus johnsonii 142. Carbohydr. Res., 2010, 345, 108-114.
  • 15. Gruter M., Leeflang B.R., Kuiper J., Kamerling J.P., Vliegenthart J.F.G., Structural characterisation of the exopolysaccharide produced by Lactobacillus delbrückii subspecies bulgaricus rr grown in skimmed milk. Carbohydr. Res., 1993, 239, 209-226.
  • 16. Güler-Akin M.B., Akin M.S., Korkmaz A., Influence of different exopolysaccharide-producing strains on the physicochemical, sensory and syneresis characteristics of reduced-fat stirred yoghurt. Int. J. Dairy Technol., 2009, 62, 422-430.
  • 17. Harding L., Marshall V, Hernandez Y., Gu Y., Maqsood M., McLay N., Laws A., Structural characterisation of a highly branched exopolysaccharide produced by Lactobacillus del-brueckii subsp. bulgaricus NCFB2074. Carbohydr. Res., 2005, 340, 1107-1111.
  • 18. Hassan A.N., Ipsen R., Janzen T., Qvist K.B., Microstructure and rheology of fermented milk made with cultures differing only in their ability to produce exopolysaccharides. J. Dairy Sci., 2003, 86, 1632-1638.
  • 19. Kailasapathy K., Survival of free and encapsulated probiotic bacteria and their effect on the sensory properties of yoghurt. LWT-Food Sci. Technol., 2006, 39, 1221-1227.
  • 20. Kimmel S.A., Roberts R.F., Development of a growth medium suitable for exopolysaccharide production by Lactobacillus del-brueckii ssp. bulgaricus RR. Int. J. Food Microbiol., 1998, 40, 87-92.
  • 21. Lamothe G., Jolly L., Mollet B., Stingele F., Genetic and biochemical characterization of exopolysaccharide biosynthesis by Lactobacillus delbrueckii subsp. bulgaricus. Arch. Microbiol., 2002, 178, 218-228.
  • 22. Li C., Li W., Chen X., Feng M., Rui X., Jiang M., Dong M., Microbiological, physicochemical and rheological properties of fermented soymilk produced with exopolysaccharide (EPS) producing lactic acid bacteria strains. LWT-Food Sci. Technol., 2014c, 57, 477-485.
  • 23. Li H., Liu L., Zhang S., Uluko H., Cui W, Lv J., Potential use of Lactobacillus casei AST18 as a bioprotective culture in yogurt. Food Control, 2013, 34, 675-680.
  • 24. Li S., Zhao Y., Zhang L., Zhang X., Huang L., Li D., Niu C., Yang Z., Wang Q., Antioxidant activity of Lactobacillus planta-rum strains isolated from traditional Chinese fermented foods. Food Chem., 2012b, 135, 1914-1919.
  • 25. Li W., Mutuvulla M., Chen X., Jiang M., Dong M., Isolation and identification of high viscosity-producing lactic acid bacteria from a traditional fermented milk in Xinjiang and its role in fermentation process. Eur. Food Res. Technol., 2012a, 235, 497-505.
  • 26. Li W., Ji J., Rui X., Yu J., Tang W., Chen X., Jiang M., Dong M., Production of exopolysaccharides by Lactobacillus helveticus MB2-1 and its functional characteristics in vitro. LWT-Food Sci. Technol., 2014b, 59, 732-739.
  • 27. Li W, Ji J., Tang W, Rui X., Chen X., Jiang M., Dong M., Characterization of an antiproliferative exopolysaccharide (LHEPS-2) from Lactobacillus helveticus MB2-1. Carbohydr. Polym., 2014a, 105, 334-340.
  • 28. Lynch K.M., McSweeney P.L.H., Arendt E.K., Uniacke-Lowe T., Galle S., Coffey A., Isolation and characterisation of exopolysac-charide-producing Weissella and Lactobacillus and their application as adjunct cultures in Cheddar cheese. Int. Dairy J., 2014, 34, 125-134.
  • 29. Maragkoudakis P.A., Miaris C., Rojez P., Manalis N., Magkanari F., Kalantzopoulos G., Tsakalidou E., Production of traditional Greek yoghurt using Lactobacillus strains with probiotic potential as starter adjuncts. Int. Dairy J., 2006, 16, 52-60.
  • 30. Mende S., Dong T., Rathemacher A., Rohm H., Jaros D., Physicochemical characterisation of the exopolysaccharides of Streptococcus thermophilus ST-143. Int. J. Food Sci. Tech., 2014, 49, 1254-1263.
  • 31. Mirlohi M., Soleimanian-Zad S., Dokhani S., Sheikh-Zeinodin M., Microbial and physiochemical changes in yoghurts containing different Lactobacillus delbrueckii subsp. bulgaricus strains in association with Lactobacillus plantarum as an adjunct culture. Int. J. Dairy Technol., 2014, 67, 246-254.
  • 32. Papagianni M., Psomas S.K., Batsilas L., Paras S.V, Kyriakidis D.A., Liakopoulou-Kyriakides M., Xanthan production by Xanthomonas campestris in batch cultures. Process Biochem., 2001, 37, 73-80.
  • 33. Prasanna P.H.P., Bell A., Grandison A.S., Charalampopoulos D., Emulsifying, rheological and physicochemical properties of exopolysaccharide produced by Bifidobacterium longum sub-sp. infantis CCUG 52486 and Bifidobacterium infantis NCIMB 702205. Carbohydr. Polym., 2012, 90, 533-540.
  • 34. Prasanna P.H.P., Grandison A.S., Charalampopoulos D., Microbiological, chemical and rheological properties of low fat set yoghurt produced with exopolysaccharide (EPS) producing Bifidobacterium strains. Food Res. Int., 2013, 51, 15-22.
  • 35. Purohit D.H., Hassan A.N., Bhatia E., Zhang X., Dwivedi C., Rheological, sensorial, and chemopreventive properties of milk fermented with exopolysaccharide-producing lactic cultures. J. Dairy Sci., 2009, 92, 847-856.
  • 36. Qin Q., Xia B., Xiong Y., Zhang S., Luo Y., Hao Y., Structural characterization of the exopolysaccharide produced by Streptococcus thermophiles 05-34 and its in situ application in yogurt. J. Food Sci., 2011, 76, 1226-1230.
  • 37. Ramchandran L., Shah N.P., Effect of exopolysaccharides on the proteolytic and angiotensin-I converting enzyme-inhibitory activities and textural and rheological properties of low-fat fermented milk during refrigerated storage. J. Dairy Sci., 2009, 92, 895-906.
  • 38. Salazar N., Prieto A., Leal J.A., Mayo B., Bada-Gancedo J.C., de los Reyes-Gavilán C.G., Ruas-Madiedo P., Production of exopolysaccharides by Lactobacillus and Bifidobacterium strains of human origin, and metabolic activity of the producing bacteria in milk. J. Dairy Sci., 2009, 92, 4158-4168.
  • 39. Shang N., Xu R., Li P., Structure characterization of an exopolysaccharide produced by Bifidobacterium animalis RH. Carbohydr. Polym., 2013, 91, 128-134.
  • 40. Shao L., Wu Z., Zhang H., Chen W., Ai L., Guo B., Partial characterization and immunostimulatory activity of exopolysaccha-rides from Lactobacillus rhamnosus KF5. Carbohydr. Polym., 2014, 107, 51-56.
  • 41. Smitinont T., Tansakul C., Tanasupawat S., Keeratipibul S., Navarini L., Bosco M., Cescutti P., Exopolysaccharide-producing lactic acid bacteria strains from traditional Thai fermented foods: isolation, identification and exopolysaccharide characterization. Int. J. Food Microbiol., 1999, 51, 105-111.
  • 42. Tallon R., Bressollier P., Urdaci M.C., Isolation and characterization of two exopolysaccharides produced by Lactobacillus plantarum EP56. Res. Microbiol., 2003, 154, 705-712.
  • 43. Vaningelgem F., Zamfir M., Mozzi F., Adriany T., Vancanneyt M., Swings J., De Vuyst L., Biodiversity of exopolysaccharides produced by Streptococcus thermophilus strains is reflected in their production and their molecular and functional characteristics. Appl. Environ. Microb., 2004a, 70, 900-912.
  • 44. Vaningelgem F., Meulen R., Zamfir M., Adriany T., Laws A.P., De Vuyst L., Streptococcus thermophilus ST 111 produces a stable high-molecular-mass exopolysaccharide in milk-based medium. Int. Dairy J., 2004b, 14, 857-864.
  • 45. Wang J., Li Q., Li M., Chen T., Zhou Y., Yue Z., Competitive adsorption of heavy metal by extracellular polymeric substances (EPS) extracted from sulfate reducing bacteria. Bioresour. Technol., 2014a, 163, 374-376.
  • 46. Wang K., Li W., Rui X., Chen X., Jiang M., Dong M., Characterization of a novel exopolysaccharide with antitumor activity from Lactobacillus plantarum 70810. Int. J. Biol. Macromol., 2014b, 63, 133-139.
  • 47. Wang Y., Li C., Liu P., Ahmed Z., Xiao P., Bai X., Physical characterization of exopolysaccharide produced by Lactobacillus plantarum KF5 isolated from Tibet Kefir. Carbohydr. Polym., 2010, 82, 895-903.
  • 48. Yang Z., Li S., Zhang X., Zeng X., Li D., Zhao Y., Zhang J., Capsu-lar and slime-polysaccharide production by Lactobacillus rhamno-sus JAAS8 isolated from Chinese sauerkraut: Potential application in fermented milk products. J. Biosci. Bioeng., 2010, 110, 53-57.
  • 49. Ye S., Zhang M., Yang H., Wang H., Xiao S., Liu Y., Wang J., Biosorption of Cu2+, Pb2+ and Cr6+ by a novel exopolysaccharide from Arthrobacter ps-5. Carbohydr. Polym., 2014, 101, 50-56.
  • 50. Yu Z., Zhang X., Li S., Li C., Li D., Yang Z., Evaluation of probiotic properties of Lactobacillus plantarum strains isolated from Chinese sauerkraut. World J. Microbiol. Biotechnol., 2013, 29, 489-498.
  • 51. Zhang J., Zhang X., Zhang L., Zhao Y., Niu C., Yang Z., Li S., Potential probiotic characterization of Lactobacillus plantarum strains isolated from Inner Mongolia "Hurood" cheese. J. Microbiol. Biotechnol., 2014, 24, 225-235.
  • 52. Zhang L., Liu C., Li D., Zhao Y., Zhang X., Zeng X., Yang Z., Li S., Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. Int. J. Biol. Macromol., 2013b, 54, 270-275.
  • 53. Zhang L., Zhang X., Liu C., Li C., Li S., Li T., Li D., Zhao Y., Yang Z., Manufacture of Cheddar cheese using probiotic Lactobacillus plantarum K25 and its cholesterol-lowering effects in a mice model. World J. Microbiol. Biotechnol., 2013a, 29, 127-135.
  • 54. Zhou F., Wu Z., Chen C., Han J., Ai L., Guo B., Exopolysaccha-rides produced by Rhizobium radiobacter S10 in whey and their rheological properties. Food Hydrocoll., 2014, 36, 362-368.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-7391b51f-379a-4320-bc3b-a31e2c3e5597
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.