PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2014 | 72 |

Tytuł artykułu

Effects of nitrogen addition on growth and photosynthetic characteristics of Acer truncatum seedlings

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Increasing levels of atmospheric nitrogen deposition have greatly affected forest trees. Acer truncatum Bunge has a large distribution in northern China, Korea and Japan and plays an important ecological role in forest ecosystems. We investigated the responses of A. truncatum to a broad range of nitrogen addition regimes with a focus on seedling growth, biomass partitioning, leaf morphology, gas exchange physiology and chlorophyll fluorescence physiology. Moderate nitrogen addition promoted shoot height, stem diameter at ground height, total biomass, size of leaves and chlorophyll fluorescence and gas exchange performance, whereas extreme level of nitrogen addition did not result in such facilitation. Chlorophyll content, pattern of biomass partitioning, ratio of leaf length to width, leaf water content, and specific leaf area did not change among the addition regimes. The critical amount of nitrogen deposition should be defined in the context of a certain time period in a particular region for a certain species at a special developmental stage. The critical amount of N deposition that weakens total biomass facilitation in A. truncatum planted in mixed soil of yellow cinnamon soil and humic soil is approximately 10 g N m−2 y−1 during the first growing season.

Wydawca

-

Czasopismo

Rocznik

Tom

72

Opis fizyczny

p.151-161,fig.,ref.

Twórcy

autor
  • Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Jinan 250100, P.R. China
  • Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Jinan 250100, P.R. China,
autor
  • Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Jinan 250100, P.R. China
  • Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Jinan 250100, P.R. China
  • Environment Research Institute, Shandong University, Jinan 250100, P.R. China
autor
  • Environment Research Institute, Shandong University, Jinan 250100, P.R. China
autor
  • Environment Research Institute, Shandong University, Jinan 250100, P.R. China
autor
  • Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Jinan 250100, P.R. China
  • Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Jinan 250100, P.R. China
autor
  • Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Jinan 250100, P.R. China
  • Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Jinan 250100, P.R. China
autor
  • Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Jinan 250100, P.R. China
  • Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Jinan 250100, P.R. China
autor
  • Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Jinan 250100, P.R. China
  • Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Jinan 250100, P.R. China

Bibliografia

  • Aber J.D., Goodale C.L., Ollinger S.V., Smith M.-L., Magill A.H., Martin M.-E., Hallett R.A., Stoddard J.L. 2003. Is nitrogen deposition altering the nitrogen status of northeastern forests? Bioscience 53: 375–389. http://dx.doi.org/10.1641/0006-3568(2003)053[0375:INDATN]2.0.CO;2
  • Berger T.W., Glatzel G. 2001. Response of Quercus petraea seedlings to nitrogen fertilization. Forest Ecology and Management 149: 1–14. http://dx.doi.org/10.1016/S0378-1127(00)00541-7
  • Björkman O., Demmig B. 1987. Photon yield of O2 evolution and chlorophyll fl uorescence characteristics and 77 K among vascular plants of diverse origin. Planta 170: 489–504. http://dx.doi.org/10.1007/BF00402983
  • Bobbink R., Ashmore M., Braun S., Flückiger W., Wyngaert I.J.J.V.D. 2003 Empirical nitrogen critical loads for natural and semi-natural ecosystems: 2002 update. Environmental Documentation No. 164, Swiss Agency for the Environment, Forest and Landscape (SAFEL), Bern, Switzerland.
  • Boussadia O., Mariem F.B., Mechri B., Boussetta W., Braham M., Hadj S.B.E. 2008. Response to drought of two olive tree cultivars (cv Koroneki and Meski). Scientia Horticulturae 116: 388–393. http://dx.doi.org/10.1016/j.scienta.2008.02.016
  • Bubier J.L., Smith R., Juutinen S., Moore T.R., Minocha R., Long S., Minocha S. 2011. Effects of nutrient addition on leaf chemistry , morphology , and photosynthetic capacity of three bog shrubs. Oecologia 167: 355–368. http://dx.doi.org/10.1007/s00442-011-1998-9
  • Burns K.C. 2004. Patterns in specific leaf area and the structure of a temperate heath community. Diversity and Distributions 10: 105–112. http://dx.doi.org/10.1111/j.1366-9516.2004.00058.x
  • Clark C.M., Tilman D. 2008. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451: 712–715. http://dx.doi.org/10.1038/nature06503
  • Dai Y., Shen Z., Liu Y., Wang L., Hannaway D., Lu H. 2009. Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. Environmental and Experimental Botany 65: 177–182. http://dx.doi.org/10.1016/j.envexpbot.2008.12.008
  • Dentener F., Drevet J., Lamarque J.F., Bey I., Eickhout B., Fiore A.M., Hauglustaine D., Horowitz L.W., Krol M., Kulshrestha U.C., Lawrence M., Galy-Lacaux C., Rast S., Shindell D., Stevenson D., Noije T., Atherton C., Bell N., Bergman D., Butler T., Cofala J., Collins B., Doherty R., Ellingsen K., Galloway J., Gauss M., Montanaro V., Müller J.F., Pitari G., Rodriguez J., Sanderson M., Solmon F., Strahan S., Schultz M., Sudo K., Szopa S., Wild O. 2006. Nitrogen and sulfur deposition on regional and global scales : A multimodel evaluation. Global Biogeochemical Cycles 20: 1–21. http://dx.doi.org/10.1029/2005GB002672
  • Elvir J.A., Wiersma G.B., Day M.E., Greenwood M.S., Fernandez I.J. 2006. Effects of enhanced nitrogen deposition on foliar chemistry and physiological processes of forest trees at the Bear Brook Watershed in Maine. Forest Ecology and Management 221: 207–214. http://dx.doi.org/10.1016/j.foreco.2005.09.022
  • Fenn M.E., Jovan S., Yuan F., Geiser L., Meixner T., Gimeno B.S. 2008. Empirical and simulated critical loads for nitrogen deposition in California mixed conifer forests. Environmental Pollution 155: 492–511. http://dx.doi.org/10.1016/j.envpol.2008.03.019
  • Flückiger W., Braun S. 1998. Nitrogen deposition in Swiss forests and its possible relevance for leaf nutrient status, parasite attacks and soil acidification. Environmental Pollution 102: 69–76. http://dx.doi.org/10.1016/S0269-7491(98)80017-1
  • Häikiö E., Freiwald V., Silfver T., Beuker E., Holopainen T., Oksanen E. 2007. Impacts of elevated ozone and nitrogen on growth and photosynthesis of European aspen ( Populus tremula ) and hybrid aspen ( P . tremula × Populus tremuloides ) clones. Canadian Journal of Forest Research 37: 2326–2336. http://dx.doi.org/10.1139/X07-084
  • Gaio-Oliveira G., Dahlman L., Palmqvist K., Máguas C. 2004. Ammonium uptake in the nitrophytic lichen Xanthoria parietina and its effects on vitality and balance between symbionts. Lichenologist 36: 75–86. http://dx.doi.org/10.1017/S0024282904014124
  • Galloway J.N., Dentener F.J., Capone D.G., Boyer E.W., Howarth R.W., Seitzinger S.P., Asner G.P., Cleveland C.C., Green P.A., Holland E.A., Karl D.M., Michaels A.F., Porter J.H., Townsend A.R., Vöosmarty C.J. 2004. Nitrogen cycles: past, present, and future. Biogeochemistry 70: 153–226. http://dx.doi.org/10.1007/s10533-004-0370-0
  • Genty B., Briantais J.M., Baker N.R. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fl uorescence. Biochimica et Biophysica Acta 990: 87–92. http://dx.doi.org/10.1016/S0304-4165(89)80016-9
  • Guo H.X., Liu W.Q., Shi Y.C. 2006. Effects of different nitrogen forms on photosynthetic rate and the chlorophyll fl uorescence induction kinetics of fl ue-cured tobacco. Photosynthetica 44: 140–142. http://dx.doi.org/10.1007/s11099-005-0170-3
  • Hyvönen R., Agren G.I., Linder S., Persson T., Cotrufo M.F., Ekblad A., Freeman M., Grelle A., Janssens I.A., Jarvis P.G., Kellomäki S., Lindroth A., Loustau D., Lundmark T., Norby R.J., Oren R., Pilegaard K., Ryan M.G., Sigurdsson B.D., Strömgren M., Oijen M., Wallin G. 2006. The likely impact of elevated [CO2], nitrogen deposition , increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems : a literature review. New Phytologist 173: 463–480. http://dx.doi.org/10.1111/j.1469-8137.2007.01967.x
  • Jiménez M.D., Pardos M., Puértolas J., Kleczkowski L.A., Parados J.A. 2009. Deep shade alters the acclimation response to moderate water stress in Quercus suber L. Forestry 82: 285–298. http://dx.doi.org/10.1093/forestry/cpp008
  • Kitaoka S., Watanabe Y., Koike T. 2009. The effects of cleared larch canopy and nitrogen supply on gas exchange and leaf traits in deciduous broad-leaved tree seedlings. Tree Physiology 29: 1503–1511. http://dx.doi.org/10.1093/treephys/tpp080
  • Lichtenthaler H.K., Wellburn A.R. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions 11: 591-592.
  • Ma X., Wu L., Ito Y., Tian W. 2005. Application of preparative high–speed counter-current chromatography for separation of methyl gallate from Acer truncatum Bunge. Journal of Chromatography A 1076: 212–215. http://dx.doi.org/10.1016/j.chroma.2005.04.077
  • Magill A.H., Aber J.D., Berntson G.M., McDowell W.H., Nadelhoffer K.J., Melillo J.M., Steudler P. 2000. Long-term nitrogen additions and nitrogen saturation in two temperate forests. Ecosystems 3: 238–253. http://dx.doi.org/10.1007/s100210000023
  • Maxwell K., Johnson G.N. 2000. Chlorophyll fl uorescence – a practical guide. Journal of Experimental Botany 51: 659–668. http://dx.doi.org/10.1093/jexbot/51.345.659
  • Nakaji T., Fukami M., Dokiya Y., Izuta T. 2001. Effects of high nitrogen load on growth , photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings. Trees 15: 453–461.
  • Nijs I., Ferris R.. Blum H., Hendrey G., Impens I. 1997. Stomatal regulation in a changing climate: a field study using free air temperature increase (FATI) and free air CO2 enrichment (FACE). Plant, Cell and Environment 20: 1041–1050. http://dx.doi.org/10.1111/j.1365-3040.1997.tb00680.x
  • Nilsson I., Grennfelt P. 1988. Critical Loads for Sulfur and Nitrogen. Report from a Workshop Held at Stokhoster, Sweden, March 19–24, 1988. Miljo Rapport. Nordic Council of Ministers, Copenhagen, Denmark, p. 15.
  • Pardo L.H., Fenn M.E., Goodale C.L., Geiser L.H., Driscoll C.T., Allen E.B., Baron J.S., Bobbink R., Bowman W.D., Clark C.M., Emmett B., Gilliam, F.S., Greaver T.L., Hall S.J., Lilleskov E.A., Liu L., Lynch J.A., Nadelhoffer K.J., Perakis S.S., Robin-Abbott M.J., Stoddard J.L., Weathers K.C., Dennis R.L. 2011. Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States. Ecological Applications 21: 3049–3082. http://dx.doi.org/10.1890/10-2341.1
  • Phoenix G.K., Emmett B.A., Britton A.J., Caporn S.J.M., Dise N.B., Helliwell R., Jones L., Leake J.R., Leith I.D., Sheppard L.J, Sowerby A., Pilkington M.G., Rowe E.C., Ashmore M.R., Power S.A. 2012. Impacts of atmospheric nitrogen deposition: responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments. Global Change Biology 18: 1197–1215. http://dx.doi.org/10.1111/j.1365-2486.2011.02590.x
  • Porter E., Blett T., Potter D.U., Huber C. 2005. Protecting resources on federal lands: implications of critical loads for atmospheric deposition of nitrogen and sulfur. BioScience 55: 603–612. http://dx.doi.org/10.1641/0006-3568(2005)055[0603:PROFLI]2.0.CO;2
  • Reay D.S., Dentener F., Smith P., Grace J., Feely R.A. 2008. Global nitrogen deposition and carbon sinks. Nature Geoscience 1: 430–437. http://dx.doi.org/10.1038/ngeo230
  • Reich R., Ellsworth D.S., Walters M.B. 1998. Leaf structure (specific leaf area) modulates photosynthesis-nitrogen relations: evidence from within and across species and functional groups. Functional Ecology 12: 948–958. http://dx.doi.org/10.1046/j.1365-2435.1998.00274.x
  • Rennenberg H., Wildhagen H., Ehlting B. 2010. Nitrogen nutrition of poplar trees. Plant Biology 12: 275–291. http://dx.doi.org/10.1111/j.1438-8677.2009.00309.x
  • Schreiber U., Schliwa U., Bilger W. 1986. Continuous recording of photochemical and non-photochemical chlorophyll fl uorescence with a new type of modulation fl uorometer. Photosynthesis Research 10: 51–62. http://dx.doi.org/10.1007/BF00024185
  • Tezara W., Martinez D., Rengifo E., Herrera A. 2003. Photosynthetic responses of the tropical spiny shrub Lycium nodosum (Solanaceae) to drought, soil salinity and saline spray. Annals of Botany 92: 757–765. http://dx.doi.org/10.1093/aob/mcg199
  • Thomas R.Q., Canham C.D., Weathers K.C., Goodale C.L. 2010. Increased tree carbon storage in response to nitrogen deposition in the US. Nature Geoscience 3: 13–17. http://dx.doi.org/10.1038/ngeo721
  • Vitousek P.M., Howarth R.W. 1991. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13: 87–115. http://dx.doi.org/10.1007/BF00002772
  • Weis E., Berry J.A. 1987. Quantum effi ciency of photosystem II in relation to energy-dependent quenching of chlorophyll fl uorescence. Biochimica et Biophysica Acta 894: 198–208. http://dx.doi.org/10.1016/0005-2728(87)90190-3
  • White J., More D. 2003. Cassell’s trees of Britain and Northern Europe.
  • Wilson E.J., Skeffington R.A. 1994. The effects of excess nitrogen deposition on young Norway spruce trees. Part II The vegetation. Environmental Pollution 86: 153–160. http://dx.doi.org/10.1016/0269-7491(94)90186-4
  • Wu F.Z., Bao W.K., Li F.L., Wu N. 2008. Effects of water stress and nitrogen supply on leaf gas exchange and fl uorescence parameters of Sophora davidii seedlings. Photosynthetica 46: 40–48. http://dx.doi.org/10.1007/s11099-008-0008-x
  • Yamaguchi M., Watanabe M., Tabe C., Naba J., Matsumura H., Kohno Y., Izuta, T. 2012. Effects of sulfur dioxide on growth and net photosynthesis of six Japanese forest tree species grown under different nitrogen loads. Trees 26: 1859–1874. http://dx.doi.org/10.1007/s00468-012-0755-y
  • Ye Z.-P. 2007. A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa. Photosynthetica 45: 637–640. http://dx.doi.org/10.1007/s11099-007-0110-5
  • Zhang X.-Q., Liu J., Welham C.C.V.J., Liu C.-C., Li D.-N., Chen L., Wang R-Q. 2006. The effects of clonal integration on morphological plasticity and placement of daughter ramets in black locust (Robinia pseudoacacia). Flora 201: 547–554. http://dx.doi.org/10.1016/j.flora.2005.12.002
  • Zhao C., Liu Q. 2009. Growth and photosynthetic responses of two coniferous species to experimental warming and nitrogen fertilization. Canadian Journal of Forest Research 39: 1–11. http://dx.doi.org/10.1139/X08-152
  • Zhou X., Zhang Y., Ji X., Downin, A., Serpe M. 2011. Combined effects of nitrogen deposition and water stress on growth and physiological responses of two annual desert plants in northwestern China. Environmental and Experimental Botany 74: 1–8. http://dx.doi.org/10.1016/j.envexpbot.2010.12.005

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-738d012b-901f-4beb-a4b4-ac0c7ad33364
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.