PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 10 | 4 |

Tytuł artykułu

Supramaximal intermittent exercise ‒ A comparison of effects on anaerobic and aerobic capacity in trained prepubertal boys and trained adults

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: ‪The aim of this study was to investigate possible variations in trained children and adults in physiological, metabolic and performance factors in response to supramaximal intermittent exercise. Material and methods: Fourteen adult trained men (eight long-distance runners and six sprinters) and seven 12-year-old trained boys performed two exercise tests on separate days: incremental cycloergometric test to determine VO2 max, AT and a supramaximal intermittent exercise (SMIE) test to determine peak power, anaerobic and aerobic capacity and also blood acidification. Results: ‪ ‪The results have shown similar relative values of VO2 max and total work performed in WAnT between boys and adult (p > 0.05) and significant differences in power peak between boys and sprinters. Total work in SMIE was performed at the energy cost from aerobic and anaerobic metabolism in boys and sprinters respectively: aerobic – 49% and 10%, glycolytic – 31% and 70%, phosphagenic – 20% and 20%. There were significant differences between groups in [La-], with no changes in parameters of acidification. Conclusions: ‪Differences between boys and adults shown under SMIE conditions are important in the practical conduct of the training appropriate to the metabolic and physical capacity of peri-pubertal boys.

Słowa kluczowe

Twórcy

  • Faculty of Rehabilitation and Kinesiology, Gdansk University of Physical Education and Sport, Gdansk, Poland

Bibliografia

  • [1] Amstrong N, Baker AR. New insights in paediatric exercise metabolism. J Sport H Sc. 2012;1:18-26.
  • [2] Zanconato S, Buchthal S, Barstow TJ, Cooper DM. 31P-magnetic resonance spectroscopy of muscle metabolism during exercise in children and adults. J Appl Physiol. 1993;74:2214-2218.
  • [3] Ratel S, Lazaarn, Dore F, et al. High-intensity intermittent activities at school: controversies and facts. J Sports Med Phys Fitness. 2004;44:273-280.
  • [4] Ratel S, Duche P, Williams CA. Muscle fatigue during high-intensity exercise in children. Sport Med. 2006;36:1031-1065.
  • [5] Vimi N, Ayramo S, Nummela A, et al. Oxygen uptake, acid-base balance and anaerobic energy system contribution in maximal 300-400 m running in children, adolescent and adult. J Ath Enhanc. 2016;5:3-8.
  • [6] Eriksson O, Saltin B. Muscle metabolism during exercise in boys aged 11 to 16 years compared to adults. Acta Paediatr Belg. 1974;28 suppl:257-265.
  • [7] Jansen E, Hedberg G. Skeletal muscle fibre – types in teenagers; relationship to physical performance and activity. Scan J M Sci Sports. 1991;1:31- 44.
  • [8] Szczęsna-Kaczmarek A, Kaczmarek-Kusznierewicz P, Ziemann E, Grzywacz T. Maximal intermittent exercise ‒ limitation of performance. Comparison trained and untrained subjects. Biol Sport. 2004;39:39-49.
  • [9] Szczęsna-Kaczmarek A. Intermittent exercise models may be basic in research of creatine complex effects in aerobic and anaerobic performance of athletes and Cr supplementation influence. Balt J Health Phys Activ. 2016; 8:471-484.
  • [10] Bar-Or O. The Wingate anaerobic test. An update on methodology, reliability and validity. Sport Med. 1987;4:381–394.
  • [11] Wasserman K, Whipp BJ, Koyal SN, Beaver WL. Anaerobic threshold measurement to evaluate exercise performance. Am Rev Respir Dis. 1984;12:S35- S40.
  • [12] Pilegaard H, Domino K, Noland T, Juel C, Hellesten Y, Halestrap AP, Bangsbo J. Effect of high intensity exercise training on lactate/H+ transport capacity in human skeletal. Am J Physiol.1999; 276:255-261.
  • [13] Vilmi N, Ayramo S, Nummela A, Pullinen T, Linnarmo V, Hakkinen K, Mero AA. Oxygen uptake acidbase balance and anaerobic energy system contribution in maximal 300-400 m running in child, adolescent and adult athletes. J Athl Enhanc. 2016;5:3-12.
  • [14] Zafeiridis A, Dalamitros A, Dipla K, Manou V, Galamis K, Kellis S. Recovery during high-intensity intermittent anaerobic exercise in boys, teens, and men. Med Sci Sports Exerc. 2005; 37: 107-112.
  • [15] Bengsbo J. Physiological demands of football. Sports Sci Exchange. 2014; 7:125-133.
  • [16] Buchheit M, Mendez-Villanueva A. Supramaximal intermittent running performance in relation to age and locomotor profile in highly-trained young soccer players. J Sports Sci. 2013;31(13):1402-1411. https://doi.org/10.1080/02640414.2013.792947
  • [17] Mendez-Villanueva A, Buchheit M, Kuiten S, Douglas A, Peltola E, Bourdon P. Age-related difference in acceleration, maximum running speed, and repeated – sprint performance in young soccer player. J Sports Sci. 2011;29(5):477-484. https://doi.org/10.1080/02640414.2010.536248
  • [18] Fawkner SG, Amstrong N, Potter CR, Welman JR. Oxygen uptake kinetics in children and adults after onset of moderate – intensity exercise. J Sports Sci. 2002;101:1432-1441. https://doi. org/10.1080/026404102753576099
  • [19] Amstrong N, Tomkinson GR, Ekelung U. Aerobic fitness and its relationship to sport, exercise training and habitual activity during youth. Br J Sports Med. 2011;45:849-856. https://doi.org/10.1136/bjsports-2011-090200
  • [20] Wiliams CA, Decerte J, McDawley k, Berthoin S, Carter H. Critical power in adolescent boys and girls an explanatory study. Appl Physiol Nutr Metab. 2008;33:1105-1111. https://doi.org/10.1139/H08-096
  • [21] Fawkner SG, Amstrong N. Modeling the VO2 kinerics response to heavy intensity exercise in children. Ergonomix. 2004;47:1517-1527. https://doi.org/10.1080/00140130412331290899
  • [22] Amon Y, Cooper DM, Flores R, Zanconato S, Barstow TJ. Oxygen uptake dynamics during high intensity exercise in children and adults. J Appl Physiol. 1991;70:841-848. https://doi.org/10.1152/jappl.1991.70.2.841
  • [23] Jones AM, Grassi B, Christensen PM, Krustrup P, Bangsbo J, Poole DC, Slow component of VO2 kinetics; Mechanistic bases and practical applications. Med Sci Sport Exerc 2011; 43:2046-2062.https://doi.org/10.1249/MSS.0b013e31821fcfc1
  • [24] Facey A, Irvin R, Dilworth L. Overview of lactate metabolism and the implications for athletes. Am J Sports Sci Med. 2013;1:42-46.
  • [25] Beneke, R, Hutler, M, Jung, M, and Leithauser, RM. Modeling the blood lactate kinetics at maximal short-term exercise conditions in children, adolescent, and adults J Appl Physio.2005; 99:499-504. https://doi.org/10.1152/japplphysiol.00062.2005
  • [26] Juel C, Halestrap AP. Lactate transport in skeletal muscle – Role and regulation of the monocarboxylate transporter. J Physiol. 1999;51:633-642. https://doi.org/10.1111/j.1469-7793.1999.0633s.x
  • [27] Pilegaard H, Domino K, Noland T, et al. Effect of high intensity exercise training on lactate/H+transport capacity in human skeletal. Am J Physiol. 1999;276:255-261. https://doi.org/10.1152/ajpendo.1999.276.2.E255
  • [28] Passarella S, Bari L, Valenti D, Oizzuto R, Paventi G, Atlante A. Mitochondria and L-lactate metabolism. FEBS letters. 2008;582:3569-3576. https://doi.org/10.1016/j.febslet.2008.09.042
  • [29] Walsh B, Tonkonogi M,Saderlund K, Hultman L, Saks V, Sahlin K. The role of phosphocreatine and creatine in the regulation of mitochondrial respiration in human skeletal muscle. J Physiol. 2001;537:971-979. https://doi.org/10.1113/jphysiol.2001.012858
  • [30] Osgnach CS, Poser R, Bernardini R, Rinaldo, di Prampero PE. Energy cost and metabolic power in elite soccer: A new match analysis approach. Med Sci Sports Exerc. 2010;42:170-178. https://doi.org/10.1249/MSS.0b013e3181ae5cfd
  • [31] Tenson A, Ratal S, Le FU Y, Vikmrv Ch, Cozone PJ, Bendhysz D. Muscle energetics changes throughout maturation: a quantitative 31P-MRS analysis. J Appl. Physiol. 2010;109:1769-1778. https://doi.org/10.1152/japplphysiol.01423.2009
  • [32] Chun-Kwan Chan H, Tik-Pui Fong D,Wai-Yuk Lee J, Kai-Ching Yau Q, Shu-Hang P, Chan KM. Power and endurance in Hong Kong professional football players. Asia-Pacific J Sports Med Arth Reh Tech.2016;5:1-5. https://doi.org/10.1016/j.asmart.2016.05.001
  • [33] Medbo Ji, Tabata I. Relative importance of aerobic and anaerobic energy release during shortlasting exhausting bicycle exercise. J Appl Physiol. 1989;67:1881-1886. https://doi.org/10.1152/jappl.1989.67.5.1881
  • [34] Falk B, Dotan R. Child-adult difference in the recovery from high-intensity exercise. Exerc Sport Sci Rev. 2006;34:107-112. https://doi.org/10.1249/00003677-200607000-00004
  • [35] Beneke R, Pollmann C, Bleif I, Leithauser RM, Hutler M. How anaerobic is the Wingate Anaerobic Test for humans? Eur J Appl Physiol. 2002;87:388-392. https://doi.org/10.1007/s00421-002-0622-4
  • [36] Bessman SP, Geiger PJ. Transport of energy in muscle: the phosphocreatine shuttle. Science. 1981;211;448-452. https://doi.org/10.1126/science.6450446

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-731fed84-90fe-48f6-ad20-9b02ed066214
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.