PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2019 | 78 | 1 |

Tytuł artykułu

Neuroprotective effects of Potentilla fulgens on spinal cord injury in rats: an immunohistochemical analysis

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: This examination was performed to research the advantage of the antioxidant impact of Potentilla fulgens on spinal cord injury (SCI) in rats. Materials and methods: In the SCI model of this examination, the tolerably serious lesion was performed at the L1–L2 spinal segmental level. SCI animals were given P. fulgens 400 mg/kg/day, intraperitoneally. At 7 days post-lesion, exploratory rats were executed after intraperitoneal administration 7 ketamine HCL (0.15 mL/100 g body weight). Spinal cord specimens were taken for histological examination or assurance of malondialdehyde (MDA) and glutathione (GSH) levels and myeloperoxidase (MPO) action. SCI caused a remarkable decline in spinal cord GSH content, trailed by noteworthy increments in MDA levels and MPO action. Results: Degenerative changes in some multipolar and bipolar nerve cells and pyknotic changes in the nuclei of glial cells were likewise noticed. Remarkable development was seen in cells and vascular structures of P. fulgens treated groups when contrasted with untreated groups. Conclusions: Potentilla fulgens application may influence angiogenetic improvement in vein endothelial cells, reduce inflammatory cell aggregation by influencing cytokine system and may make apoptotic nerve cells and neuroprotective component in glial cells. (Folia Morphol 2019; 78, 1: 17–23)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

78

Numer

1

Opis fizyczny

p.17-23,fig.,ref.

Twórcy

autor
  • Department of Physiotherapy University of Health Sciences, Gazi Yasargil Education and Research Hospital, Diyarbakır, Turkey
autor
  • Department of Neurosurgery, University of Health Sciences, Gazi Yasargil Education and Research Hospital, Diyarbakır, Turkey
autor
  • Department of Anatomy, Faculty of Medicine, University of Dicle, Diyarbakir, Turkey

Bibliografia

  • 1. Abrams GM, Ganguly K. Management of chronic spinal cord dysfunction. Continuum (Minneap Minn). 2015; 21(1 Spinal Cord Disorders): 188–200, doi: 10.1212/01.CON.0000461092.86865.a4, indexed in Pubmed: 25651225.
  • 2. Abrams MB, Nilsson I, Lewandowski SA, et al. Imatinib enhances functional outcome after spinal cord injury. PLoS One. 2012; 7(6): e38760, doi: 10.1371/journal.pone.0038760, indexed in Pubmed: 22723886.
  • 3. Ahuja CS, Wilson JR, Nori S, et al. Traumatic spinal cord injury. Nat Rev Dis Primers. 2017; 3: 17018, doi: 10.1038/nrdp.2017.18, indexed in Pubmed: 28447605.
  • 4. Barua CC, Yasmin N. Potentilla fulgens: a systematic review on traditional uses, pharmacology and phytochemical study with reference to anticancer activity. J Nat Prod Resour. 2018; 4(1): 162–170, doi: 10.30799/jnpr.058.18040103.
  • 5. Bi F, Huang C, Tong J, et al. Reactive astrocytes secrete lcn2 to promote neuron death. Proc Natl Acad Sci U S A. 2013; 110(10): 4069–4074, doi: 10.1073/pnas.1218497110, indexed in Pubmed: 23431168.
  • 6. Cabrera-Aldana EE, Ruelas F, Aranda C, et al. Methylprednisolone administration following spinal cord injury reduces aquaporin 4 expression and exacerbates edema. Mediators Inflamm. 2017; 2017: 4792932, doi: 10.1155/2017/4792932, indexed in Pubmed: 28572712.
  • 7. Chen MH, Ren QX, Yang WF, et al. Influences of HIF-lα on Bax/Bcl-2 and VEGF expressions in rats with spinal cord injury. Int J Clin Exp Pathol. 2013; 6(11): 2312–2322, indexed in Pubmed: 24228092.
  • 8. Cho M. Focus on neurodegeneration. Nat Neurosci. 2010; 13(7): 787, doi: 10.1038/nn0710-787, indexed in Pubmed: 20581813.
  • 9. Christie SD, Comeau B, Myers T, et al. Duration of lipid peroxidation after acute spinal cord injury in rats and the effect of methylprednisolone. Neurosurg Focus. 2008; 25(5): E5, doi: 10.3171/FOC.2008.25.11.E5, indexed in Pubmed: 18980479.
  • 10. del Rayo Garrido M, Silva-García R, García E, et al. Therapeutic window for combination therapy of A91 peptide and glutathione allows delayed treatment after spinal cord injury. Basic Clin Pharmacol Toxicol. 2013; 112(5): 314–318, doi: 10.1111/bcpt.12023, indexed in Pubmed: 23057752.
  • 11. DeRuisseau LR, Recca DM, Mogle JA, et al. Metallothionein deficiency leads to soleus muscle contractile dysfunction following acute spinal cord injury in mice. Am J Physiol Regul Integr Comp Physiol. 2009; 297(6): R1795–R1802, doi: 10.1152/ajpregu.00263.2009, indexed in Pubmed: 19828842.
  • 12. Fernández R, González P, Lage S, et al. Influence of the cation adducts in the analysis of matrix-assisted laser desorption ionization imaging mass spectrometry data from injury models of rat spinal cord. Anal Chem. 2017; 89(16): 8565–8573, doi: 10.1021/acs.analchem.7b02650, indexed in Pubmed: 28703574.
  • 13. Fouad K, Tetzlaff W. Rehabilitative training and plasticity following spinal cord injury. Exp Neurol. 2012; 235(1): 91–99, doi: 10.1016/j.expneurol.2011.02.009.14. Genovese T, Esposito E, Mazzon E, et al. Absence of endogenous interleukin-10 enhances secondary inflammatory process after spinal cord compression injury in mice. J Neurochem. 2009; 108(6): 1360–1372, doi: 10.1111/j.1471-4159.2009.05899.x, indexed in Pubmed: 19183262.
  • 15. Genovese T, Esposito E, Mazzon E, et al. Evidence for the role of mitogen-activated protein kinase signaling pathways in the development of spinal cord injury. J Pharmacol Exp Ther. 2008; 325(1): 100–114, doi: 10.1124/jpet.107.131060, indexed in Pubmed: 18180375.
  • 16. Herrera JJ, Nesic O, Narayana PA. Reduced vascular endothelial growth factor expression in contusive spinal cord injury. J Neurotrauma. 2009; 26(7): 995–1003, doi: 10.1089/neu.2008.0779, indexed in Pubmed: 19257807.
  • 17. Hillegass LM, Griswold DE, Brickson B, et al. Assessment of myeloperoxidase activity in whole rat kidney. J Pharmacol Methods. 1990; 24(4): 285–295, indexed in Pubmed: 1963456.
  • 18. Hoschouer EL, Yin FQ, Jakeman LB. L1 cell adhesion molecule is essential for the maintenance of hyperalgesia after spinal cord injury. Exp Neurol. 2009; 216(1): 22–34, doi: 10.1016/j.expneurol.2008.10.025, indexed in Pubmed: 19059398.
  • 19. Jaitak V, Kaul VK, Kumar N, et al. New hopane triterpenes and antioxidant constituents from Potentilla fulgens. Nat Prod Commun. 2010; 5(10): 1561–1566, indexed in Pubmed: 21121248.
  • 20. Jia YF, Gao HL, Ma LJ, et al. Effect of nimodipine on rat spinal cord injury. Genet Mol Res. 2015; 14(1): 1269–1276, doi: 10.4238/2015.February.13.5, indexed in Pubmed: 25730065.
  • 21. Kanno H, Ozawa H, Sekiguchi A, et al. Spinal cord injury induces upregulation of Beclin 1 and promotes autophagic cell death. Neurobiol Dis. 2009; 33(2): 143–148, doi: 10.1016/j.nbd.2008.09.009, indexed in Pubmed: 18948195.
  • 22. Kopach O, Medvediev V, Krotov V, et al. Opposite, bidirectional shifts in excitation and inhibition in specific types of dorsal horn interneurons are associated with spasticity and pain post-SCI. Sci Rep. 2017; 7(1): 5884, doi: 10.1038/s41598-017-06049-7, indexed in Pubmed: 28724992.
  • 23. Koziel K, Smigelskaite J, Drasche A, et al. RAF and antioxidants prevent cell death induction after growth factor abrogation through regulation of Bcl-2 proteins. Exp Cell Res. 2013; 319(17): 2728–2738, doi: 10.1016/j.yexcr.2013.07.029, indexed in Pubmed: 23933517.
  • 24. Kundu A, Ghosh A, Singh NK, et al. Wound healing activity of the ethanol root extract and polyphenolic rich fraction from Potentilla fulgens. Pharm Biol. 2016; 54(11): 2383–2393, doi: 10.3109/13880209.2016.1157192, indexed in Pubmed: 27043472.
  • 25. Liu Y, Figley S, Spratt SK, et al. An engineered transcription factor which activates VEGF-A enhances recovery after spinal cord injury. Neurobiol Dis. 2010; 37(2): 384–393, doi: 10.1016/j.nbd.2009.10.018, indexed in Pubmed: 19879362.
  • 26. Ludwig PE, Patil AA, Chamczuk AJ, et al. Hormonal therapy in traumatic spinal cord injury. Am J Transl Res. 2017; 9(9): 3881–3895, indexed in Pubmed: 28979667.
  • 27. Moonen G, Satkunendrarajah K, Wilcox JT, et al. A new acute impact-compression lumbar spinal cord injury model in the rodent. J Neurotrauma. 2016; 33(3): 278–289, doi: 10.1089/neu.2015.3937, indexed in Pubmed: 26414192.
  • 28. Müller MM, Middelanis J, Meier C, et al. 17β-estradiol protects 7-day old rats from acute brain injury and reduces the number of apoptotic cells. Reprod Sci. 2013; 20(3): 253–261, doi: 10.1177/1933719112452471, indexed in Pubmed: 22875845.
  • 29. Nesic O, Sundberg LM, Herrera JJ, et al. Vascular endothelial growth factor and spinal cord injury pain. J Neurotrauma. 2010; 27(10): 1793–1803, doi: 10.1089/neu.2010.1351, indexed in Pubmed: 20698758.
  • 30. Özevren H, Irtegün S, Deveci E, et al. Neuroprotective Effects of Potentilla fulgens on traumatic brain injury in rats. Anal Quant Cytol Histol. 2017; 39: 35–44.
  • 31. Patel CB, Cohen DM, Ahobila-Vajjula P, et al. Effect of VEGF treatment on the blood-spinal cord barrier permeability in experimental spinal cord injury: dynamic contrast-enhanced magnetic resonance imaging. J Neurotrauma. 2009; 26(7): 1005–1016, doi: 10.1089/neu.2008.0860, indexed in Pubmed: 19226205.
  • 32. Ray SK, Samntaray S, Banik NL. Future directions for using estrogen receptor agonists in the treatment of acute and chronic spinal cord injury. Neural Regen Res. 2016; 11(9): 1418–1419, doi: 10.4103/1673-5374.191212, indexed in Pubmed: 27857741.
  • 33. Ren Yi, Young W. Managing inflammation after spinal cord injury through manipulation of macrophage function. Neural Plast. 2013; 2013: 945034, doi: 10.1155/2013/945034, indexed in Pubmed: 24288627.
  • 34. Savas M, Verit A, Ciftci H, et al. Oxidative Stress in BPH. JNMA J Nepal Med Assoc. 2009; 48(173): 41–45, indexed in Pubmed: 19529057.
  • 35. Shen LF, Cheng H, Tsai MC, et al. PAL31 may play an important role as inflammatory modulator in the repair process of the spinal cord injury rat. J Neurochem. 2009; 108(5): 1187–1197, doi: 10.1111/j.1471-4159.2008.05865.x, indexed in Pubmed: 19141070.
  • 36. Silva NA, Sousa N, Reis RL, et al. From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol. 2014; 114: 25–57, doi: 10.1016/j.pneurobio.2013.11.002, indexed in Pubmed: 24269804.
  • 37. Sinescu C, Popa F, Grigorean VT, et al. Molecular basis of vascular events following spinal cord injury. J Med Life. 2010; 3(3): 254–261, indexed in Pubmed: 20945816.
  • 38. Song Z, Xu S, Song B, et al. Bcl-2-associated athanogene 2 prevents the neurotoxicity of MPP+ via interaction with DJ-1. J Mol Neurosci. 2015; 55(3): 798–802, doi: 10.1007/s12031-014-0481-6, indexed in Pubmed: 25600833.
  • 39. Sun T, Liu B, Li P. Nerve protective effect of asiaticoside against ischemia-hypoxia in cultured rat cortex neurons. Med Sci Monit. 2015; 21: 3036–3041, doi: 10.12659/MSM.894024, indexed in Pubmed: 26447863.
  • 40. Syiem D, Khup PZ, Syiem AB. Effects of Potentilla fulgens Linn. on carbohydrate and lipid profiles in diabetic mice. Pharmacologyonline. 2009; 2: 787–795.
  • 41. Tas M, Gok E, Ekinci C, et al. Investigation of Various Events Occurring in the Brain Tissue After Calvarial Defects in Rats. Int J Morphol. 2016; 34(1): 29–33, doi: 10.4067/s0717-95022016000100005.
  • 42. Toklu HZ, Hakan T, Celik H, et al. Neuroprotective effects of alpha-lipoic acid in experimental spinal cord injury in rats. J Spinal Cord Med. 2010; 33(4): 401–409, indexed in Pubmed: 21061900.
  • 43. Tu WZ, Chen WC, Xia W, et al. The regulatory effect of electro-acupuncture on the expression of NMDA receptors in a SCI rat model. Life Sci. 2017; 177: 8–14, doi: 10.1016/j.lfs.2017.04.004, indexed in Pubmed: 28392262.
  • 44. Wu Y, Yang L, Mei X, et al. Selective inhibition of STAT1 reduces spinal cord injury in mice. Neurosci Lett. 2014; 580: 7–11, doi: 10.1016/j.neulet.2013.11.055, indexed in Pubmed: 24321405.
  • 45. Yu YQ, Hu NC, Duan JA, et al. Neuroprotective effects of sufentanil preconditioning on spinal cord injury in mouse models. J Tissue Eng. 2016; 20: 5966–5972.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-731aa2ac-4c85-40d6-a09c-26475df7f048
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.