Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 23 | 4 |

Tytuł artykułu

The effect of plant polyphenols on the antioxidant defence system of weaned piglets subjected to an Escherichia coli challenge

Warianty tytułu

Języki publikacji



The goal of this study was to evaluate the effect of an optimized plant polyphenol (PP) mixture consisting of polyphenols extracted from apples, grape seeds, green teas and olive leaves on the systemic antioxidant capacity in piglets orally challenged with Escherichia coli (E. coli). A total of 24 piglets were weaned at 28 days and allocated to 4 groups for a 42-d experiment with a 2 × 2 factorial design comparing different dietary treatments [a basal diet without (CTR) or with 0.1% of the optimized PP mixture (PP)] and oral E. coli challenges on days 21 and 25 (saline or E. coli). On days 25, 27 and 34 of the trial, one piglet from each pen was selected for blood sampling. The E. coli challenge decreased the gain-to-feed ratio (G:F) from day 21 to day 42 (P < 0.10), reduced plasma superoxide anion (SAIC) and hydroxyl radical (HRIC) inhibiting capacities, and increased the plasma ceruloplasmin content on day 27 (P < 0.10). PP supplementation increased the G:F ratio from day 21 to day 42 (P < 0.10). Compared with the CTR diet, PP supplementation increased plasma GSH-Px activity on day 25 and plasma T-AOC activity on day 27 (P < 0.10), and dietary PP increased plasma SAIC on day 27 and plasma HRIC on day 34 (P < 0.10). These results suggest that PP supplementation may improve the antioxidant status of post-weaning piglets and counteract some of the negative effects that occur when piglets are challenged with E. coli.

Słowa kluczowe








Opis fizyczny



  • Department of Health, Animal Science and Food Safety, Department of Health, Animal Science and Food Safety, Universita degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
  • Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun Nandajie 12, 100081 Beijing, China
  • Department of Health, Animal Science and Food Safety, Department of Health, Animal Science and Food Safety, Universita degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
  • Lombardy and Emilia Romagna Experimental Zootechnic Institute, Via Bianchi 9, 25124 Brescia, Italy
  • Department of Health, Animal Science and Food Safety, Department of Health, Animal Science and Food Safety, Universita degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
  • Department of Health, Animal Science and Food Safety, Department of Health, Animal Science and Food Safety, Universita degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
  • Department of Health, Animal Science and Food Safety, Department of Health, Animal Science and Food Safety, Universita degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
  • Department of Health, Animal Science and Food Safety, Department of Health, Animal Science and Food Safety, Universita degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy


  • Aebi H., 1984. Catalase in vitro. Methods Enzymol. 105, 121–126
  • Babior B.M., Kipnes R.S., Curnutte J.J., 1970. Biological defense mechanism. The production by leukocytes of superoxide, a potential bactericide agent. J. Clin. Invest. 52, 791–794
  • Bagchi D., Garg A., Krohn R.L., Bagchi M., Tran M.X., Stohs S.J., 1997. Oxygen free radical scavenging abilities of vitamins C and E, and a grape seed proanthocyanidin extract in vitro. Res. Commun. Molecul. Pathol. P. 95, 179–189
  • Benzie I.F., Strain J.J., 1996. The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: the FRAP assay. Anal. Biochem. 239, 70–76
  • Bontempo V., Jiang X.R., Cheli F., Lo Verso L., Mantovani G., Vitari F., Domeneghini C., Agazzi A., 2014. Administration of a novel plant extract product via drinking water to post-weaning piglets: effects on performance and gut health. Animal 8, 721–730
  • Cao Z.F., Chen Z.G., Guo P., Zhang S.M., Lian L.X., Luo L., Hu W.M., 1993. Scavenging effects of ginger on superoxide anion and hydroxyl radical. Zhongguo Zhong Yao Za Zhi (China J. Mat. Med.) 18, 750–751, 764
  • Fairbrother J.M., Nadeau E., Gyles C.L., 2005. Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Anim. Health Res. Rev. 6, 17–39
  • Fan P., Lou H., 2004. Effects of polyphenols from grape seeds on oxidative damage to cellular DNA. Mol. Cell. Biochem. 267, 67–74
  • Francis D.H., 2002. Enterotoxigenic Escherichia coli infection in pigs and its diagnosis. J. Swine Health Prod. 10, 171–175
  • Gabay C., Kushner I., 1999. Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 340, 448–454
  • González R., Ballester I., López-Posadas R., Suárez M.D., Zarzuelo A., Martínez-Augustin O., Sánchez de Medina F., 2011. Effects of flavonoids and other polyphenols on inflammation. Crit. Rev. Food Sci. Nutr. 51, 331–362
  • Gordon N.C., Wareham D.W., 2010. Antimicrobial activity of the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) against clinical isolates of Stenotrophomonas maltophilia. Int. J. Antimicrob. Agents 36, 129–131
  • Han J., Shuvaev V.V., Muzykantov V.R., 2011. Catalase and SOD conjugated with PECAM antibody distinctly alleviate abnormal endothelial permeability caused by exogenous ROS and vascular endothelial growth factor. J. Pharmacol. Exp. Ther. 338, 82–91
  • Han Y.H., Moon H.J., You B.R., Kim S.Z., Kim S.H., Park W.H., 2009. The effect of MAPK inhibitors on arsenic trioxide-treated Calu-6 lung cells in relation to cell death, ROS and GSH levels. Anticancer Res. 29, 3837–3844
  • Heim K.E., Tagliaferro A.R., Bobilya D.J., 2002. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 13, 572–584
  • Jacobs B.M., Patience J.F., Lindemann M.D., Stalder K.J., Kerr B.J., 2013. The use of a covariate reduces experimental error in nutrient digestion studies in growing pigs. J. Anim. Sci. 91, 804–810
  • Jaeschke H., 1995. Mechanisms of oxidant stress-induced acute tissue injury. Proc. Soc. Exp. Biol. Med. 209, 104–111
  • Kähkönen M.P., Hopia A.I., Vuorela H.J., Rauha J.P., Pihlaja K., Kujala T.S., Heinonen M., 1999. Antioxidant activity of plant extracts containing phenolic compounds. J. Agr. Food Chem. 47, 3954–3962
  • Lee J.S., Awji E.G., Lee S.J., Tassew D.D., Park Y.B., Park K.S., Kim M.K., Kim B., Park S.C., 2012. Effect of Lactobacillus plantarum CJLP243 on the growth performance and cytokine response of weaning pigs challenged with enterotoxigenic Escherichia coli. J. Anim. Sci. 90, 3709–3717
  • Lee O.H., Lee B.Y., Lee J., Lee H.B., Son J.Y., Park C.S., Shetty K., Kim Y.C., 2009. Assessment of phenolics-enriched extract and fractions of olive leaves and their antioxidant activities. Bioresource Technol. 100, 6107–6113
  • Lessard M., Dupuis M., Gagnon N., Nadeau E., Matte J.J., Goulet J., Fairbrother J.M., 2009. Administration of Pediococcus acidilactici or Saccharomyces cerevisiae boulardii modulates development of porcine mucosal immunity and reduces intestinal bacterial translocation after Escherichia coli challenge. J. Anim. Sci. 87, 922–934
  • Liu Y., Song M., Che T.M., Almeida J.A.S., Lee J.J., Bravo D., Maddox C.W., Pettigrew J.E., 2013. Dietary plant extracts alleviate diarrhea and alter immune responses of weaned pigs experimentally infected with a pathogenic Escherichia coli. J. Anim. Sci. 91, 5294–5306
  • Lu N., Chen P., Yang Q., Peng Y.Y., 2011. Anti- and pro-oxidant effects of (+)-catechin on hemoglobin-induced protein oxidative damage. Toxicol. Vitro 25, 833–838
  • Lu Y., Foo Y., 2000. Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food Chem. 68, 81–85
  • Lykkesfeldt J., Svendsen O., 2007. Oxidants and antioxidants in disease: oxidative stress in farm animals. Vet. J. 173, 502–511
  • Morinaga N., Iwamaru Y., Yahiro K., Tagashira M., Moss J., Noda M., 2005. Differential activities of plant polyphenols on the binding and internalization of cholera toxin in vero cells. J. Biol. Chem. 280, 23303–23309
  • NRC, 2012. Nutrient Requirements of Swine. 11th revised Edition. National Academic Press. Washington, DC
  • Rossi R., Pastorelli G., Corino C., 2013. Application of KRL test to assess total antioxidant activity in pigs: sensitivity to dietary antioxidants. Res. Vet. Sci. 94, 372–377
  • Schosinsky K.H., Lehman H.P., Beeler M.F., 1974. Measurement of ceruloplasmin from its oxidase activity in serum by use of o-dianisidine dihydrochloride. Clin. Chem. 20, 1556–1563
  • Sugihara N., Arakawa T., Ohnishi M., Furuno K., 1999. Anti- and prooxidative effects of flavonoids on metal-induced lipid hydroperoxide-dependent lipid peroxidation in cultured hepatocytes loaded with alpha-linolenic acid. Free Radical Biol. Med. 27, 1313–1323
  • Unno T., Sugimoto A., Kakuda T., 2000. Scavenging effect of tea catechins and their epimers on superoxide anion radicals generated by a hypoxanthine and xanthine oxidase system. J. Sci. Food Agric. 80, 601–606
  • Valko M., Leibfritz D., Moncol J., Cronin M.T., Mazur M., Telser J., 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39, 44–84
  • Varga Z., Czompa A., Kakuk G., Antus S., 2001. Inhibition of the superoxide anion release and hydrogen peroxide formation in PMNLs by flavonolignans. Phytother. Res. 15, 608–612
  • Verdonck F., Cox E., van Gog K., Van der Stede Y., Duchateau L., Deprez P., Goddeeris B.M., 2002. Different kinetic of antibody responses following infection of newly weaned pigs with an F4 enterotoxigenic Escherichia coli strain or an F18 verotoxigenic Escherichia coli strain. Vaccine 20, 2995–3004
  • Verhelst R., Schroyen M., Buys N., Niewold T., 2010. The effects of plant polyphenols on enterotoxigenic Escherichia coli adhesion and toxin binding. Livest. Sci. 133, 101–103
  • Verhelst R., Schroyen M., Buys N., Niewold T., 2014. Dietary polyphenols reduce diarrhea in enterotoxigenic Escherichia coli (ETEC) infected post-weaning piglets. Livest. Sci. 160, 138–140
  • Wang X., Zhao X., 2009. Contribution of oxidative damage to antimicrobial lethality. Antimicrob. Agents Chemother. 53, 1395–1402
  • Wang Y.Z., Xu C.L., An Z.H., Liu J.X., Feng J., 2008. Effect of dietary bovine lactoferrin on performance and antioxidant status of piglets. Anim. Feed Sci. Tech. 140, 326–336
  • Windisch W., Schedle K., Plitzner C., Kroismayr A., 2008. Use of phytogenic products as feed additives for swine and poultry. J. Anim. Sci. 86, E140–E148
  • Yu F., Xu D., Lei R., Li N., Li K., 2008. Free-radical scavenging capacity using the fenton reaction with rhodamine B as the spectrophotometric indicator. J. Agr. Food Chem. 56, 730–735
  • Zhang H.J., Jiang X.R., Mantovani G., Valdez Lumbreras A.E., Comi M., Alborali G., Savoini G., Dell’Orto V., Bontempo V., 2014. Modulation of plasma antioxidant activity in weaned piglets by plant polyphenols. Ital. J. Anim. Sci. 13, 424–430


Rekord w opracowaniu

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.