PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 22 | 4 |

Tytuł artykułu

Sensitivity of the game control of ship in collision situations

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The paper introduces the application of the theory of deterministic sensitivity control systems for sensitivity analysis taking place in game control systems of moving objects, such as ships. The sensitivity of parametric model of game ship control process and game control in collision situations - sensitivity to changes in its parameters have been presented. First-order and k-th order sensitivity functions of parametric model of the process and game control are described. The structure of the game ship control system in collision situations and the mathematical model of game control process in the form of state equations are given. Characteristics of sensitivity functions of the model and game ship control process on the base of computer simulation in Matlab/Simulink software have been presented. At the end are given proposals regarding the use of sensitivity analysis to practical synthesis of computer-aided system navigator in potential collision situations

Słowa kluczowe

Wydawca

-

Rocznik

Tom

22

Numer

4

Opis fizyczny

p.27-33,fig.,ref.

Twórcy

autor
  • Department of Ship Automation, Faculty of Electrical Engineering, Gdynia Maritime University, 83 Morska St., 81-225 Gdynia, Poland

Bibliografia

  • 1. Astrom K.J.: Model uncertainty and robust control. Lecture notes on iterative identification and control design. Lund Institut of Technology, Sweden 2000, pp. 63-100.
  • 2. Baba N., Jain L.C.: Computational intelligence in games. Physica-Verlag, New York 2001.
  • 3. Basar T., Olsder G.J.: Dynamic non-cooperative game theory. Siam, Philadelphia 2013.
  • 4. Bist D.S.: Safety and security at sea. Butterworth Heinemann, Oxford-New Delhi 2000.
  • 5. Bole A., Dineley B., Wall A.: Radar and ARPA manual. Elsevier, Amsterdam-Tokyo 2006.
  • 6. Cahill R.A.: Collisions and their causes. The Nautical Institute, London 2002.
  • 7. Cruz J.B.: Feedback systems. Mc Graw-Hill Book Company, New York 1972.
  • 8. Dorf R.C., Bishop R.H.: Modern control systems. AddisonWesley, California 1998.
  • 9. Engwerda J.C.: LQ dynamic optimization and differential games. John Wiley and Sons, West Sussex 2005.
  • 10. Eslami M.: Theory of sensitivity in dynamic systems. Springer-Verlag, Berlin 1994.
  • 11. Fossen T.I.: Marine craft hydrodynamics and motion control. Wiley, Trondheim 2011.
  • 12. Fujarewicz K.: Structural sensitivity analysis of systems with delay (in Polish). XVIII Krajowa Konferencja Procesów Dyskretnych, Zakopane 2014.
  • 13. Gierusz W., Lebkowski A.: The researching ship “Gdynia”, Polish Maritime Research, Vol. 19, No. 74, 2012, pp. 11-18.
  • 14. Gluver H., Olsen D.: Ship collision analysis. Balkema, Rotterdam 1998.
  • 15. Isaacs R.: Differential games. John Wiley and Sons, New York 1965.
  • 16. Lazarowska A.: Safe ship control method with the use of ant colony optimization. Solid State Phenomena, Vol. 210, 2014, pp. 95–101.
  • 17. Lisowski J.: Comparison of dynamic games in application to safe ship control. Polish Maritime Research, Vol. 21, No. 3, 2014, pp. 3-12.
  • 18. Miller A., Rybczak M.: Model predictive control algorithm verification with the use of real time xPC target platform. Joint Proceedings, No. 84, 2014, pp. 73-84.
  • 19. Mohamed-Seghir M.: The branch-and-bound method, genetic algorithm, and dynamic programming to determine a safe ship trajectory in fuzzy environment. 18th International Conference in Knowledge Based and Intelligent Information and Engineering Systems. Procedia Computer Science, No. 35, 2014, pp. 634-643.
  • 20. Modarres M.: Risk analysis in engineering. Taylor and Francis Group, Boca Raton 2006.
  • 21. Nisan N., Roughgarden T., Tardos E., Vazirani V.V.: Algorithmic game theory. Cambridge University Press, New York 2007, p. 717-733.
  • 22. Nise N.S.: Control systems engineering. John Wiley and Sons, New York 2015.
  • 23. Nise N.S.: Control systems engineering. Wiley, California 2015.
  • 24. Osborne M.J.: An introduction to game theory. Oxford University Press, New York 2004.
  • 25. Rosenwasser E., Yusupov R.: Sensitivity of automatic control systems. CRC Press, Boca Raton 2000.
  • 26. Sanchez-Pena R.S., Sznaier M.: Robust systems theory and applications. Wiley, New York 1998.
  • 27. Skogestad S., Postlethwaite I.: Multivariable feedback control. Wiley, Chichester 2005.
  • 28. Straffin P.D.: Game theory and strategy (in Polish). Scholar, Warszawa 2001.
  • 29. Szlapczynski R.: Evolutionary sets of safe ship trajectories with speed reduction manoeuvres within traffic separation schemes. Polish Maritime Research, Vol. 81, No 1, 2014, pp. 20-27.
  • 30. Tomera M.: Dynamic positioning system for a ship on harbour manoeuvring with different observers. Experimental results. Polish Maritime Research, Vol. 83, No. 3, 2014, pp. 13-21.
  • 31. Wierzbicki A.: Models and sensitivity of control systems (in Polish). WNT, Warszawa 1977.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-72996d61-1fda-4337-b60d-9b2a5db692e0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.