EN
The poor productivity and local confinement of indigenous aromatic rice varieties are mostly due to their susceptibility to salinity/drought/abscisic acid (ABA)- mediated abiotic stresses. It is thus essential to study the effects of several stress factors on their physiological parameters so as to improve their tolerance mechanism and enhance their global demand. Previously, we studied the effect of salinity stress on the physiological and molecular responses of the common aromatic rice Gobindobhog. The objective of this study was to understand the influence of exogenous ABA on some biochemical parameters in Gobindobhog, and comparison with those from non-aromatic M-1-48 and Nonabokra rice. The highest endogenous hydrogen peroxide content and membrane lipid peroxidation (increased malondialdehyde and lipoxygenase activity) were found in ABA-treated Gobindobhog leaves. While the catalase activity was down regulated the most in ABA-treated Gobindobhog leaves, the guaiacol peroxidase activity was induced maximally, indicating the protective role of peroxidase rather than catalase, during ABAinduced oxidative damages. The antioxidant, anthocyanin, showed the highest level in ABA-treated Nonabokra. Enhanced cysteine, following ABA exposure and the highest levels of reducing sugars, total amino acids, proline, and polyamines (putrescine and spermidine) recorded in Gobindobhog, probably served to shield from ABAinduced stress injuries, whereas the spermine levels were comparable in ABA-treated Nonabokra and Gobindobhog. The aroma content, intensified after ABA treatment, was markedly noted in Gobindobhog. Thus, the systematic examination of ABA-mediated stress revealed the most prominent oxidative damages in Gobindobhog, even higher than M-1-48, with a concomitant enhancement in peroxidase system and particularly osmolyte or polyamine levels to ensure its sustenance.